Journal of the Korean Institute of Educational Facilities
/
v.2
no.2
/
pp.41-50
/
1995
The large increase in the number of students and the current rapid social change requires the expansion of educational facilities for the improvement of the educational content and its method, the usefulness of educational media, and the improvement of teaching and learning activities. The educational facilities have largely served is done efficiently and it results in a functional harmony of these two aspects. In order to maximize this harmony, and thus maximize the efficiency of school education, we must analyze the human engineering factors of educational facilities through human being that is the main subject of education, humans. Therefore to maximize the efficiency of school education, we must analyze the human engineering factors of educational facilities through human being that is the main subject in learning and living. In Conclusion we suggest the following six analying standards on human engineering of educational facilities; 1. adequacy 2. suitability 3. healthfulness 4. safety 5. beauty 6. modernity.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.11a
/
pp.349-352
/
2009
최근 정보의 형태는 텍스트나 이미지 기반에서 벗어나 복합 멀티미디어, 즉 동영상 위주로 빠르게 이동하고 있다. 특히 사용자에 의해 제작되고 유통되는 동영상 UCC의 급격한 부상은 사용자의 정보 생산력과 정보 공유, 소비 형태를 능동적으로 변화시키고 있다. PC 뿐 아니라 IPTV에서도 주요 서비스 모델로 관심을 받는 동영상 UCC는 향후 지식 결부형 학습 콘텐츠로 옮아갈 것이라 예상되고 있으며 여기에는 수익 모델의 개발과 저작권 보호 이슈가 해결해야 할 선결 과제로 인식된다. 이에 본 논문은 방송 콘텐츠 제공 표준 기술인 TV-Anytime, 학습객체메타데이터인 LOM(Learning Object Metadata)을 기반으로 OSMU 동영상 UCC 학습 콘텐츠 서비스 모델을 위한 에디터를 설계하고 외부 콘텐츠 소스를 활용할 수 있는 콘텐츠 저작 시나리오에 기반한 메타데이터를 설계하였다. 이를 통해 사용자의 다양한 지식을 활용할 수 있는 UCC 학습 콘텐츠 서비스 모델 발굴과 콘텐츠의 확대 재생산에 있어서 적극적인 저작권 보호가 이루어질 것을 기대한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.497-498
/
2015
영상을 취득한 후 다양한 응용프로그램으로 확장이 가능한 4 차원 light field 영상은 일반적인 2 차원 공간 (spatial) 영역과 추가적인 2 차원 각 (angular) 영역으로 구성된다. 그러나 이러한 4 차원 light field 영상을 2 차원 CMOS 센서로 취득하므로 이에 따른 해상도 제약이 존재한다. 본 논문에서는 이러한 4 차원 light field 영상이 가지는 해상도 제약 조건을 해결하기 위하여, 4 차원 light field 영상에 적합한 학습 기반 (learning-based) 초해상도 (superresolution) 알고리즘을 제안한다. 제안하는 알고리즘은 공간영역 해상도 그리고 각영역의 해상도를 각각 2 배 향상시킨다. 실험에 사용되는 영상은 상용 light field 카메라인 Lytro 에서 취득하며, 기존의 선형 보간 기법인 bicubic 기법과의 비교를 통해 제안하는 기법의 우수성을 검증한다.
The purpose of this study is to analyze the misconception flowchart of programming control structure and to suggest it as a method for improving computational thinking. In this study, we divide programming control structure concept into sequential, iteration, selection, and function, analyze what concept and principle are difficult for each learner, and what kind of misconception flowchart is drawn in the Introduction of C Programming course for beginners' programming learning. As an example, we show that a lesson learned from the process of correcting the misconception flowchart to the correct flowchart in the course.
An online mean-shift object tracking algorithm, which consists of a learning stage and an estimation stage, is proposed in this work. The learning stage selects the features for tracking, and the estimation stage composes a likelihood image and applies the mean shift algorithm to it to track an object. The tracking performance depends on the quality of the likelihood image. We propose two schemes to generate and integrate likelihood images: one based on the discrete AdaBoost (DAB) and the other based on the real AdaBoost (RAB). The DAB scheme uses tuned feature values, whereas RAB estimates class probabilities, to select the features and generate the likelihood images. Experiment results show that the proposed algorithm provides more accurate and reliable tracking results than the conventional mean shift tracking algorithms.
Journal of information and communication convergence engineering
/
v.16
no.3
/
pp.160-165
/
2018
This paper designed and developed the image processing system of integrating feature extraction and matching by using convolutional neural network (CNN), rather than relying on the simple method of processing feature extraction and matching separately in the image processing of conventional image recognition system. To implement it, the proposed system enables CNN to operate and analyze the performance of conventional image processing system. This system extracts the features of an image using CNN and then learns them by the neural network. The proposed system showed 84% accuracy of recognition. The proposed system is a model of recognizing learned images by deep learning. Therefore, it can run in batch and work easily under any platform (including embedded platform) that can read all kinds of files anytime. Also, it does not require the implementing of feature extraction algorithm and matching algorithm therefore it can save time and it is efficient. As a result, it can be widely used as an image recognition program.
In this paper, a program controlling an auto-audio media - cassette deck - by a 16 bit personal computer is studied in order to execute audio and visual learning in CAI. The results of this study are as follows. 1. Audio and visual learning is executed efficiently in CAI. 2. Access rate of voice information to text/image information is about 98% and 60% in "play" and "fast forward" respectively. 3. In "fast forward", quality of a cassette tape affects voice information access rate in propotion to motor driving speed. 4. Synchronizing signal may be mistaken by defects of tape itself.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.223-228
/
2009
We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.11a
/
pp.337-339
/
2011
본 연구에서는 EPUB기반의e-Book 콘텐츠를 스마트러닝환경에서학습객체로 활용하고자한다. 이를 위해e-Book의 표준인 EPUB을 분석하여 SCORM의 콘텐츠 모델을 적용하여 확장 설계하였으며, 더블린코어와 LOM 메타데이터를 Collection Map을 이용하여 EPUB 기반의 학습객체메타데이터인ELOM을 설계하였다. EPUB기반의 학습객체가 LMS에서 추적관리가 가능하도록 SCORM2004의 CMI 데이터 모델을 바탕으로 학습객체 특성에 맞는 기본 데이터 모델을 정의하였다. 설계된 학습객체의 운용 가능성을 평가하기 위해 EPUP기반 오픈소스 콘텐츠인 모비딕의 bodymatter를 학습객체로 재구현한 후 ADL의 SCORM2004 $4^{th}$ Test Suite1.1.1을 이용하여 검증하였다. 본 연구에서 설계된 ELOM은 스마트 스크린으로 확장하여 적용할 수 있다.
Korean Journal of English Language and Linguistics
/
v.2
no.1
/
pp.123-147
/
2002
As far as the recent ELT research concerned, it seems to have been no hot ‘theoretical’ issues, but ‘practical’ ones in general: e.g., learners and learning, components of proficiency, correlates of L2 learning, etc. This paper focuses on the theme given above, with a special reference to the sub-title: specifically, 1) World English, world Englishes and world's lingua franca; 2) ENL, ESL and EFL; 3) Grammars, style manuals, dictionaries and media; 4) Pronunciation models: RP, BBC model and General American, Network Standard; 5) Lexical, grammatical variations and discourse grammars; 6) Beliefs and subjective theories in foreign language research; 7) Dilemma among radical, canonical and eclectic views. In conclusion, the author offers a modest proposal: we need to appeal to our own experience, intention, feeling and purpose, that is, our identity to express “our own selves” in our contexts toward the world anywhere, if not sounding authentic enough, but producing it plausibly well. It is time for us (with our ethno-cultural autonomy) to need to be complementary to and parallel with its native speakers' linguistic-cultural authenticity in terms of the broadest mutual understanding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.