• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.027 seconds

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

An Analysis of Improvement and Compilation Issues of Mathematics Textbooks for Elementary Schools: Focusing on the 2015 Revised Elementary School Mathematics Textbook Government Published (초등학교 수학 교과서 개선과 편찬 상의 이슈 분석: 2015 개정 초등학교 수학 국정 교과용 도서를 중심으로)

  • Lee, Hwa Young
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.411-431
    • /
    • 2022
  • In this paper, implications for future curriculum compilation were sought by analyzing the process and results of compiling books for elementary school mathematics textbooks government published according to the 2015 revised curriculum. The 2015 revised elementary mathematics textbooks government published was operated with a systematic compilation system so that academia and school field experts across the country could demonstrate their expertise. As improvements in content, the unit and time to strengthen basic computational skills were increased, and the mathematical concept and principle introduction method and algorithm presentation method were improved, and the internal connection between contents was strengthened. The learning period was adjusted, such as moving and arranging contents that are difficult for students to understand to the upper semester or the upper grade. In the 1st and 2nd graders, the amount of reading was drastically reduced to suit the students' level of Korean, and sentences and vocabulary were improved, and instructions were briefly revised. As for editing and design improvements, illustrations of each unit's introduction and contextual pictures were presented in detail, and the characters in the textbook were consistently presented across all grades, giving children characters a role to actively participate in learning in the textbook. In the process of compiling, the media, the National Assembly, and civic groups raised opinions that sentences and vocabulary in first-year textbooks are more difficult than students' level of Hangeul education, that reducing textbooks makes it difficult for students to understand. Accordingly, efforts to improve textbook compilation and the results were viewed. Through the overall analysis as above, for future compilation of state-authored textbooks and certified textbooks, a plan to improve textbook compilation for students and teachers and a plan to operate compilation was proposed.

A Case Study of Online Writing Class - Focusing on at G University and the Response of Learners - (온라인 글쓰기 수업 운영 사례 연구 - G대학의 <교양글쓰기> 사례와 학습자의 반응을 중심으로 -)

  • Song, Dae-Heon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.6
    • /
    • pp.115-125
    • /
    • 2021
  • The study presented an online class case focusing on G University's writing course, and analyzed students' satisfaction. Through this, it aimed to analyze the possibility of online education and to explore efficient operation of online writing lectures. According to the result of looking into the online writing class run by G University, students' satisfaction with the online writing class was high. Despite the limited circumstances, students' participation in the class was high and they also actively participated in online correction. However, there was also a challenge to address. Online writing education showed limitations in terms of smooth communication with students. Correction of writing can be done online sufficiently but the limitations of communication should be supplemented to improve the completeness of interactive education. In addition, most of the students participated in online correction, but some did not participate. It is necessary to encourage students to participate voluntarily to make online classes take roots. After all, for the effective operation of online writing classes, strategies and systems for teaching and learning should be prepared for utilization of various educational video media, sufficient learning of theory and practice of writing, and smooth communication between professors and students. Only when these conditions are met, online writing classes will be able to operate steadily.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Data Augmentation for Tomato Detection and Pose Estimation (토마토 위치 및 자세 추정을 위한 데이터 증대기법)

  • Jang, Minho;Hwang, Youngbae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-55
    • /
    • 2022
  • In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.

A Study on the Development of Emotional Content through Natural Language Processing Deep Learning Model Emotion Analysis (자연어 처리 딥러닝 모델 감정분석을 통한 감성 콘텐츠 개발 연구)

  • Hyun-Soo Lee;Min-Ha Kim;Ji-won Seo;Jung-Yi Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.687-692
    • /
    • 2023
  • We analyze the accuracy of emotion analysis of natural language processing deep learning model and propose to use it for emotional content development. After looking at the outline of the GPT-3 model, about 6,000 pieces of dialogue data provided by Aihub were input to 9 emotion categories: 'joy', 'sadness', 'fear', 'anger', 'disgust', and 'surprise'. ', 'interest', 'boredom', and 'pain'. Performance evaluation was conducted using the evaluation indices of accuracy, precision, recall, and F1-score, which are evaluation methods for natural language processing models. As a result of the emotion analysis, the accuracy was over 91%, and in the case of precision, 'fear' and 'pain' showed low values. In the case of reproducibility, a low value was shown in negative emotions, and in the case of 'disgust' in particular, an error appeared due to the lack of data. In the case of previous studies, emotion analysis was mainly used only for polarity analysis divided into positive, negative, and neutral, and there was a limitation in that it was used only in the feedback stage due to its nature. We expand emotion analysis into 9 categories and suggest its use in the development of emotional content considering it from the planning stage. It is expected that more accurate results can be obtained if emotion analysis is performed by additionally collecting more diverse daily conversations through follow-up research.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Awareness of Adverse Drug Reaction Reporting System in General Population (일반인에서의 의약품 부작용보고제도 인식도)

  • Ahn, So Hyeon;Chung, Sooyoun;Jung, Sun-Young;Shin, Ju-Young;Park, Byung-Joo
    • Health Policy and Management
    • /
    • v.24 no.2
    • /
    • pp.164-171
    • /
    • 2014
  • Background: Safety of drugs has become a major issue in public healthcare. Spontaneous reporting of adverse drug reaction (ADR) is the cornerstone in management of drug safety. We aimed to investigate the awareness and knowledge of spontaneous ADR reporting in general public of Korea. Methods: A total of 1,500 study subjects aged 19-69 years were interviewed with a questionnaire for their awareness and knowledge related to spontaneous ADR reporting. Computer assisted telephone interview was performed from 27th February 2013 to 4th March 2013. Target population was selected with quota sampling, using age, sex, and residence area. Healthcare professionals such as physicians, pharmacists, and nurses were excluded. The survey questions included awareness of spontaneous ADR reporting, opinions on ways to activate ADR reporting, and sociodemographic characteristics. Results: Overall awareness of spontaneous ADR reporting system was 8.3% (${\pm}2.53%$) among general population of Korea. Major source from which people got the information regarding ADR reporting was television/radio (69.9%), followed by internet (19.3%), and poster/brochure (6.1%). Awareness level differed between age groups (p<0.0001) and education levels (p<0.0001). Upon learning about the ADR reporting system, 88.5% of study subjects agreed on the necessity of ADR reporting system, while 46.6% thought promotion through internet and mass media as an effective way to activate ADR reporting. Conclusion: The overall awareness of spontaneous ADR reporting should be enhanced in order to establish a firm national system for drug safety. Adequate promotions should be performed targeting lower awareness groups, as well as various publicity activities via effective channels for the general population.

A Study for Improved Human Action Recognition using Multi-classifiers (비디오 행동 인식을 위하여 다중 판별 결과 융합을 통한 성능 개선에 관한 연구)

  • Kim, Semin;Ro, Yong Man
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.166-173
    • /
    • 2014
  • Recently, human action recognition have been developed for various broadcasting and video process. Since a video can consist of various scenes, keypoint approaches have been more attracted than template based methods for real application. Keypoint approahces tried to find regions having motion in video, and made 3-dimensional patches. Then, descriptors using histograms were computed from the patches, and a classifier based on machine learning method was applied to detect actions in video. However, a single classifier was difficult to handle various human actions. In order to improve this problem, approaches using multi classifiers were used to detect and to recognize objects. Thus, we propose a new human action recognition using decision-level fusion with support vector machine and sparse representation. The proposed method extracted descriptors based on keypoint approach from a video, and acquired results from each classifier for human action recognition. Then, we applied weights which were acquired by training stage to fuse each results from two classifiers. The experiment results in this paper show better result than a previous fusion method.

The Study on the Development of Accreditation System for Instructional Materials and Equipment in Early Childhood Education (유아교육 교재 교구 평가인증에 관한 고찰)

  • Kim, Kyung Chul;Lee, Man-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2123-2133
    • /
    • 2014
  • The purpose of this study is to discuss plan for the development of accreditation system for instructional materials and equipment in kindergarten. Instructional materials in early childhood education are enough importance and effectiveness is high. In addition, the commercialization of materials, a number of common trends in the development of instructional materials, and these materials and ensure a qualitative judgment of the teaching and learning are required. So that can be used easily in the field to develop the instructional materials of excellent quality, maintenance, and management of a professional certification system is a demand. In this paper, the current situation in the instructional materials authentication system to examine the books have such a system, to identify the problems, to suggest preferred direction for teaching and leaning materials certification system.