• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.031 seconds

Audio Contents Classification based on Deep learning for Automatic Loudness Control (오디오 음량 자동 제어를 위한 콘텐츠 분류 기술 개발)

  • Lee, Young Han;Cho, Choongsang;Kim, Je Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.320-321
    • /
    • 2018
  • 오디오 음량을 자동으로 제어하는데 있어 음성이 있는 구간에 대해서 음량이 급격히 줄어드는 것을 막기 위해 콘텐츠에 대한 분석이 필요하다. 본 논문에서는 방송 음량을 조절을 위한 세부 기술로 딥러닝 기반의 콘텐츠 분류 기술을 제안한다. 이를 위해 오디오를 무음, 음성, 음성/오디오 혼합, 오디오의 4개로 정의하고 이를 처리하기 위한 mel-spectrogram을 이용하여 2D CNN 기반의 분류기를 정의하였다. 또한 학습을 위해 방송 오디오 데이터를 활용하여 학습/검증 데이터 셋을 구축하였다. 제안한 방식의 성능을 확인하기 위해 검증 데이터셋을 활용하여 정확도를 측정하였으며 약 81.1%의 정확도를 가지는 것을 확인하였다.

  • PDF

Design of Agent System for Learning to Ear Acupuncture (이침 혈자리 학습을 위한 에이전트 시스템의 설계)

  • Jang, Yong Hyun;Jeon, Ji Young;Yang, Janghoon;Choi, Yoo Ju
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.9-11
    • /
    • 2013
  • 본 논문에서는 귀의 형태와 색을 통해서 질병을 자가진단 후 귀의 특정 부위를 자극하는 이침요법을 위한 시술 보조 시스템을 제안한다. 제안 시스템은 피시술자의 귀의 이미지 정보와 질병에 대한 정보를 처리하여 이침을 위한 혈자리를 귀 이미지에 표시해 주는 시스템을 구현하였다. 특히 귀를 인식하는 부분에 있어서, Haar-like feature와 Adaboost알고리즘을 사용하는 OpenCV내의 함수를 사용하였고 인식된 귀영역을 그리드 영역으로 나누고 질병에 대한 사전 정보에 따라서 그리드 영역내의 이침혈자리 시스템을 표시하는 시스템으로 구성하였다.

Architecture of LCMS for Smart Learing Based on BigData (빅데이터 기반 스마트러닝을 위한 LCMS 구조)

  • Kim, Seong-Jin;Park, Seok-Cheon;Lee, Sang-Muk
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1234-1237
    • /
    • 2013
  • 빅데이터의 중요성이 부각되고 있는 빅데이터의 시대에 교육서비스시장은 스마트 교육이라는 새로운 변화에 따라 많은 변화가 일어나고 있다. 자기 주도적이며 개인화되고 쌍방향커뮤니케이션 등의 특징을 가진 스마트러닝 환경에서는 LMS와 LCMS의 역할이 점점 중요해지고 있다. 현재 콘텐츠의 중요성이 부각되는 정보홍수 시대이므로 LCMS가 해야 할 역할이 크다. 그러나 아직까지는 교육서비스에서 빅데이터의 아키텍쳐와 대용량 데이터 처리 기술을 활용하고 있는 사례는 그다지 많지 않다. 이에 본 논문에서는 빅데이터 기술을 활용한 LCMS에 대해 분석하고 새로운 방안을 제시하고자 한다.

CNN based Image Restoration Method for the Reduction of Compression Artifacts (압축 왜곡 감소를 위한 CNN 기반 이미지 화질개선 알고리즘)

  • Lee, Yooho;Jun, Dongsan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.676-684
    • /
    • 2022
  • As realistic media are widespread in various image processing areas, image or video compression is one of the key technologies to enable real-time applications with limited network bandwidth. Generally, image or video compression cause the unnecessary compression artifacts, such as blocking artifacts and ringing effects. In this study, we propose a Deep Residual Channel-attention Network, so called DRCAN, which consists of an input layer, a feature extractor and an output layer. Experimental results showed that the proposed DRCAN can reduced the total memory size and the inference time by as low as 47% and 59%, respectively. In addition, DRCAN can achieve a better peak signal-to-noise ratio and structural similarity index measure for compressed images compared to the previous methods.

End-to-End Learning-based Spatial Scalable Image Compression with Multi-scale Feature Fusion Module (다중 스케일 특징 융합 모듈을 통한 종단 간 학습기반 공간적 스케일러블 영상 압축)

  • Shin Juyeon;Kang Jewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.1-3
    • /
    • 2022
  • 최근 기존의 영상 압축 파이프라인 대신 신경망의 종단 간 학습을 통해 압축을 수행하는 알고리즘의 연구가 활발히 진행되고 있다. 본 논문은 종단 간 학습 기반 공간적 스케일러블 압축 기술을 제안한다. 보다 구체적으로 본 논문은 신경망의 각 계층에서 하위 계층의 학습된 특징 (feature)을 융합하여 상위 계층으로 전달하는 다중 스케일 특징 융합 (multi-scale feature fusion) 모듈을 도입해 상위 계층이 더욱 풍부한 특징 정보를 학습하고 계층 사이의 특징 중복성을 더욱 잘 제거할 수 있도록 한다. 기존 방법 대비 향상 계층(enhancement layer)에서 1.37%의 BD-rate가 향상된 결과를 볼 수 있다.

  • PDF

Improvement of MIV using Deep Learning based Super Resolution (딥러닝 기반 초해상화 기술을 이용한 MIV 성능 개선)

  • TaeHyun Jeong;YoonSeob Lee;Kwan-Jung Oh;Byung Tae Oh
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.44-46
    • /
    • 2022
  • 본 논문에서는 TMIV 부호화 과정에서 개선된 압축성능을 위해 딥러닝을 이용한 초해상화 기술을 적용하는 방식을 제안한다. 제안 방식에서는 TMIV 인코더에서 아틀라스 생성한 후, 해당 아틀라스의 패킹된 뷰들을 downsampling하여 뷰들이 축소된 아틀라스를 생성하는 방식을 사용한다. 생성된 아틀라스는 기존의 방식 그대로 VVC를 이용하여 부복호화를 한다. 복호화된 아틀라스를 렌더링을 위해 뷰로 만드는 과정 중에 딥러닝을 이용한 초해상화 기술을 적용하여 줄어든 뷰들을 원래의 크기로 복원시킨다. 제안 기술을 통해 복원된 뷰의 화질을 유지시킨 채 많은 비트율을 감소시킬 수 있음이 확인된다.

  • PDF

Making and Analyzing My Handwriting Font Using Deep Learning (딥러닝을 활용한 나만의 손글씨 글꼴 생성 및 분석)

  • Cho, Gwon-Yeong;Park, gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.225-227
    • /
    • 2022
  • 다양한 분야에서 전자기기들을 사용함으로 인해 문서를 작성할 때 디지털 글꼴을 통해 작성하게 되는데, 이로 인해 글꼴을 종류가 여러 형태로 증가하면서 다양한 글꼴들을 사용하고 있다. 하지만, 글꼴마다 저작권을 가지고 있어서 마음에 든다고 해서 함부로 사용할 수도 없는 것이 문제점이다. 또한, 한글은 다른 언어에 비해 글자 조합방식이 많아서 폰트로 제작하기엔 많은 시간과 비용이 든다는 문제도 있다. 이러한 문제들을 해결하기 위해서 딥러닝을 통해 글꼴을 제작하게 된다면 적은 글자를 입력해 많은 글자의 결과를 도출함으로써, 시간과 비용을 절감해 효율적으로 만들고자 하였다. 이에 본 논문은 GAN을 기반으로 한 손글씨 폰트 제작을 하는 가운데 글꼴을 만들기 위해 입력에 어떤 글자들이 필요한 지에 대해 연구하였다. 다양한 분석적 요소를 갖고 실험을 하여 입력에 따라 결과가 어떻게 달라지는지를 알아보았고 이를 바탕으로 글꼴을 생성하였다.

  • PDF

Object Detection Method Using Adversarial Learning on Domain Discriminator (도메인 판별기의 적대적 학습을 이용한 객체 검출 방법)

  • Hyeonseok Kim;Yeejin Lee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.91-94
    • /
    • 2022
  • 자율주행 자동차 개발 연구가 활발히 진행됨에 따라 객체 검출기의 성능이 중요하게 되었다. 딥러닝 기술의 발전하면서 객체 검출기의 성능도 큰 발전을 이루었다. 그에 따라 도로 위 차량 검출기의 성능도 발전하고 있으나 평상시 낮 도로상황에서 잘 동작하던 모델은 안개가 끼거나 밤 상황이 되면 제대로 동작하지 못하는 문제를 가지고 있다. 이유는 딥러닝 모델이 학습할 때 사용한 데이터셋의 정보에 따라 특정 도메인에 편향된 특성을 학습하기 때문이다. 따라서, 본 논문에서는 객체 검출 신경망에 도메인 판별기를 적용하여 이와 같은 도메인 이동 문제를 극복하는 모델을 제안한다. 모델의 성능을 Cityscapes 데이터셋과 Foggy Cityscapes 데이터셋을 사용하여 평가한 결과, 기존의 특정 도메인에서 학습한 모델보다 제안하는 모델의 검출 성능이 개선된다는 것을 확인하였다.

  • PDF

A Reference Architecture for Blockchain-based Federated Learning (블록체인 기반 연합학습을 위한 레퍼런스 아키텍처)

  • Goh, Eunsu;Mun, Jong-Hyeon;Lee, Kwang-Kee;Sohn, Chae-bong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.119-122
    • /
    • 2022
  • 연합학습은, 데이터 샘플을 보유하는 다수의 분산 에지 디바이스 또는 서버들이 원본 데이터를 공유하지 않고 기계학습 문제를 해결하기 위해 협력하는 기술로서, 각 클라이언트는 소유한 원본 데이터를 로컬모델 학습에만 사용함으로써, 데이터 소유자의 프라이버시를 보호하고, 데이터 소유 및 활용의 파편화 문제를 해결할 수 있다. 연합학습을 위해서는 통계적 이질성 및 시스템적 이질성 문제 해결이 필수적이며, 인공지능 모델 정확도와 시스템 성능을 향상하기 위한 다양한 연구가 진행되고 있다. 최근, 중앙서버 의존형 연합학습의 문제점을 극복하고, 데이터 무결성 및 추적성과 데이터 소유자 및 연합학습 참여자에게 보상을 효과적으로 제공하기 위한, 블록체인 융합 연합학습기술이 주목받고 있다. 본 연구에서는 이더리움 기반 블록체인 인프라와 호환되는 연합학습 레퍼런스 아키텍처를 정의 및 구현하고, 해당 아키텍처의 실용성과 확장성을 검증하기 위하여 대표적인 연합학습 알고리즘과 데이터셋에 대한 실험을 수행하였다.

  • PDF

Classification for the Breakage of the Package Boxes using a Deep Learning Network (딥러닝 네트워크를 통한 택배 상자 파손 분류)

  • Kim, Eun-Kang;Kim, Seong-Ha;Sin, Hye-Seon;Kim, So-Yeon;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.250-253
    • /
    • 2022
  • 본 설계에서는 택배의 현재 상태를 확인 후 택배 상자의 파손 유무를 분류하고 사진으로 제공하는 기술을 제안하였다. 본 설계에서는 딥러닝 네트워크를 통해 훈련된 인공지능을 통해 일반 상자와 파손 상자를 분류하고, 파손 상태일 시 소비자와 택배사에 알람으로 보고하는 것을 주 기능으로 하고 있다. 딥러닝 네트워크 훈련을 위해 약 1,000장의 데이터셋을 직접 구성하고 학습하였다. 본 설계에서 사용된 택배 상자 파손 여부 분류기의 분류 정확도는 93.33%이고, 이 분류 성능은 택배 상자의 상태를 분류하는 데 있고, 정확도의 분류 성능이라고 할 수 있다.

  • PDF