Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.14-16
/
2019
스마트관제 시스템은 딥러닝 서버내 학습된 백본 네트워크 모델이 실시간으로 스트리밍 되는 CCTV 영상으로부터 이상행동 패턴을 선별적으로 탐지하고 관제요원에게 전달하여, 사전에 사건사고를 예방하거나 즉시 대응 체계의 유연한 운영을 가능케하는 시스템이다. 최근 지능형 CCTV(Closed Circuit Television) 서비스가 일부 지역에 선별 관제의 형태로 시범적으로 운영되고 있는 상황이다. 지능형 시범서비스는 공공 영역에서 선별 CCTV 관제의 형태로 이상행동 상황을 즉각 인지하여 사건사고를 예방하거나 피해를 최소화하고자 하는 목적으로 주로 사용되고 있다. 그러나, 범죄 등의 특정 시나리오에만 한정해서도 이상 행동 유형이 너무나 다양하기 때문에 이상행동 영상의 사전분류(Annotation)를 통해 딥러닝 모델을 학습시키는 것이 현실적으로 어려운 상황이다. 따라서 본고에서는 최신 이상 행동 탐지(Anomaly detection) 알고리즘과 응용사례를 분석하여 실제 현장에 적용할 수 있는 현장 중심의 기법을 제안하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2008.11a
/
pp.55-58
/
2008
IPTV 기반의 이러닝 마켓플레이스는 IPTV를 통한 이러닝 서비스 제공을 하기 위한 교육 콘텐츠 공급자와 수요자간의 마켓플레이스로써, 이는 양방향 매체 하에서의 이러닝 서비스로써 많은 관심의 대상이 되고 있으며, 방송통신융합의 초기 단계에서 IPTV는 다양한 콘텐츠와 서비스 모델의 개발을 통하여 그 효용성을 높이는데 기여를 할 수 있을 것이다. 본 논문에서는 IPTV기반의 이러닝 마켓플레이스에서 핵심적인 프레임워크를 구성하기 위하여 이러닝, e-마켓플레이스, IPTV에서의 특징과 기존의 이러닝 마켓플레이스들의 기능을 매트릭스를 통한 비교분석으로 기본요소를 추출하고, 이를 통하여 프레임워크를 구성한다. 또한 비즈니스모델 개발을 위하여 비즈니스모델설정, 참여자/역할, 제품/서비스 커버리지, 운영시나리오, 수익모델을 작성하고 이를 통하여 실제적으로 비즈니스모델의 구현이 가능한지를 검증한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2001.11b
/
pp.57-62
/
2001
현재 서비스되고 있는 디지털 위성방송(DVB) 서비스의 경우 비디오는 SD급인 MPEG-2 방식을 이용하고 있다. [1] MPEG-2 비디오를 위성을 이용한 원격 교육 서비스에 적용할 경우 해상도 및 데이터량이 보이고자 하는 교육 데이터에 배해 상대적으로 커 비효율적이다. 이를 개선하고 위성을 이용한 원격교육 서비스를 효율적으로 구현하기 위한 MPEG-4 적용 방안 및 구현 기술을 제안한다. MPEG-4 비디오 프로파일은 심플 프로파일을 적용하며 오디오는 G.273.1을 사용하고 MPEG-4 데이터 및 mp4 파일 전송은 DVB 방식의 데이터 방송 규격인 MPE와 Data Carousel을 적용한다. MPEG-4를 이용한 위성 원격교육 서비스에서의 실시간 강의 서비스에 해당하는 라이브 캐스팅 외에 mp4 파일을 이용한 파일 캐스팅 및 비실시간 강의 서비스에 해당하는 mp4 파일의 캐로셀 전송 방안에 대해서 제안 하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.80-81
/
2016
본 논문에서는 딥 러닝을 이용한 오디오 장르 분류 기술을 제안한다. 장르는 music, speech, effect 3가지로 정의하여 분류한다. 기존의 GMM을 이용한 장르 분류 기술은 speech의 인식률에 비해 music과 effect에 대한 인식률이 낮아 각 장르에 대한 인식률의 차이를 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 딥 러닝을 이용해 높은 수준의 추상화 과정을 거쳐 더 세분된 학습을 진행한다. 제안한 방법을 사용하면 미세한 차이의 특성까지 학습해 장르에 대한 인식률의 차이를 줄일 수 있으며, 각 장르에 대해 GMM을 이용한 오디오 장르 분류보다 높은 인식률을 얻을 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.3-4
/
2014
음악 장르 분류 분야에서는 다양한 특징을 모아서 특징 벡터를 만들고 이를 support vector machine (SVM)와 같은 분류기에 입력하는 시스템이 주로 사용되고 있다. 이 논문에서는 거리 함수 학습를 음악 장르 분류를 위한 특징 벡터의 간소화에 적용하였다. 여러 거리 함수 학습 방법 중 하나의 방법을 선택하고, 기존의 논문들에서 사용되었던 특징 셋을 활용하여 기존 특징 셋에 대해서 성능을 떨어뜨리지 않으면서 특징 셋의 길이를 줄일 수 있는지 살펴본다. 우리의 실험에서는 168차원의 특징 셋을 10차원까지 줄였는데, 이 경우 분류 정확도가 2% 이내로 저하되었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.90-91
/
2016
본 논문에서는 스펙트로그램을 이용한 딥 러닝 기반의 오디오 장르 분류 기술을 제안한다. 기존의 오디오 장르 분류는 대부분 GMM 알고리즘을 이용하고, GMM의 특성에 따라 입력 성분들이 서로 직교한 성질을 갖는 MFCC를 오디오의 특성으로 사용한다. 그러나 딥 러닝을 입력의 성질에 제한이 없으므로 MFCC보다 가공되지 않은 특성을 사용할 수 있고, 이는 오디오의 특성을 더 명확히 표현하기 때문에 효과적인 학습을 할 수 있다. 본 논문에서는 딥 러닝에 효과적인 특성을 구하기 위하여 스펙트로그램(spectrogram)을 사용하여 오디오 특성을 추출하는 방법을 제안한다. 제안한 방법을 사용한면 MFCC를 특성으로 하는 딥 러닝보다 더 높은 인식률을 얻을 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.40-43
/
2017
본 논문은 딥러닝을 이용하여 대장통과시간(Colon Transit Time, CTT) 검사를 위한 단순복부 X-Ray 영상에서 방사선 비투과성 표지자(Radio-opaque Marker)를 자동으로 검출하는 기법을 제시한다. 대장통과시간 검사는 대장의 운동질환을 평가하는데 있어 가장 기본적인 방법으로 특히 만성 변비증 환자의 병태생리에 따른 유형 분류와 치료 계획을 설정하는데 큰 도움을 주고 있으며, 내과적 또는 외과적 치료 후 평가에도 유용한 검사이다. 대장통과시간 검사는 방사선 비투과성 표지자가 내재되어 있는 캡슐을 복용한 뒤 주기적으로 단순복부 X-Ray 촬영을 통해 구간별로 남아있는 표지자의 수를 세고, 이를 통해 구역별 통과시간을 측정한다. 이 과정에서 판독의가 직접 표지자의 위치 및 개수를 세기 때문에 많은 시간이 필요하게 된다. 따라선 본 논문에서는 이러한 단점을 보완하기 위해 딥러닝 기법을 사용하여 X-Ray 영상 내에서 표지자의 위치를 자동 파악하는 기법을 제시한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.190-191
/
2017
본 논문에서는 딥 콘볼루션 신경망 구조를 사용하여 학습된 초해상화 알고리즘을 GPU 프로그래밍을 통해 실시간 동작이 가능하도록 하는 방법을 제시하였다. 딥 러닝이 많이 대중화 되면서 많은 영상처리 알고리즘이 딥러닝을 기반으로 연구가 되었다. 하지만 계산 량이 많이 필요로 하는 딥 러닝 기반 알고리즘은 UHD 이상의 고해상도 영상처리에는 실시간 처리가 어려웠다. 이런 문제를 해결하기 위해서 고속 병렬 처리가 가능한 GPU 를 사용해서 2K 입력영상을 4K 출력 영상으로 확대하는 딥 초해상화 알고리즘을 30 fps 이상의 처리 속도로 동작이 가능하도록 구현을 하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.243-244
/
2017
최근 이미지 처리 및 인식 문제를 해결하는데 많이 사용되고 있는 CNN(Convolution Neural Network)를 이용하여 작은 dataset에서 Overfitting을 감소시키며 학습 할 수 있는 방법인 Dropout과 이미지를 왜곡하여 data를 늘리는 방법을 사용하여 보다 효율적으로 학습할 수 있는 방법을 연구 하였다. Batch별 처리속도를 기준으로 두 네트워크의 구조를 다르게 구현하여 비슷한 처리 시간을 수행하게 되도록 실험환경을 만들고 진행 하였다. Tensorflow로 네트워크를 구성하였고. Dataset은 Cifar_10을 사용 한다. 실험결과에 의하면 dropout의 경우 더 빨리 정확도가 향상되지만 이미지 왜곡을 사용하는 경우 저 높은 정확도로 수렴하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.25-30
/
2009
패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 가중치 평균 분류기는 가중치를 적절히 설정함으로써 뛰어난 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 가중치는 인식 문제 분야의 특성이나 해당 전문가의 지식이나 주관적 경험을 기반으로 설정되므로 설정된 가중치의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 가중치 평균 분류기의 가중치를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 가중치 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터들 중의 하나인 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.