• Title/Summary/Keyword: Learning Hybrid Modeling Method

Search Result 34, Processing Time 0.029 seconds

Application of Learning Control for U-type Tuned Liquid Damper System (U자형 TLD시스템에 대한 학습제어 적용)

  • Ga, Chun-Sik;Ryu, Yeong-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1656-1663
    • /
    • 2004
  • As the structures become larger, higher and more complicated, the demand for safety level has increased. In recent years, TLD(Tuned Liquid Damper) proved to be a successful control tool for reducing structural vibrations. For this reason, the influence of some key parameters of the U-type TLD on the dynamic response is studied. And simple and effectively developed learning control logic is used to control vibration of U type Tuned Liquid Damper system. The purpose of this paper is design optimal control system to deal with unknown errors from non linearity and variation that cost modeling difficulty in complex structure and is followed with the desired behavior. Finally this hybrid control method applied to U type Tuned Liquid Damper structure gives the benefit from better performance of precision and stability of the structure by reducing vibration effect. This research leads to safety design in various structure to robust unspecified foreign disturbances such as windy-load and earthquake.

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

Neurofuzzy System for an Intial Ship Design

  • Kim, Soo-Young;Kim, Hyun-Cheol;Lee, Kyung-Sun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.585-590
    • /
    • 1998
  • The purpose of this paper is to develop a neurofuzzy modeling & inference system which can determine principle dimensions and hull factors in an initial ship design. Neurofuzzy modeling & inference for a hull form design (NeFHull) applies the given input-output data to the fuzzy theory. NeFHull also deals the fuzzificated values with neural networks. NeFHull redefines normalized input-output data as membership functions and executes the fuzzficated information with backporpagation-neural -networks. A hybrid learning algorithms utilized in the training of neural networks and examining the usefulness of suggested method through mathematical and mechanical examples.

  • PDF

Advance Neuro-Fuzzy Modeling Using a New Clustering Algorithm (새로운 클러스터링 알고리듬을 적용한 향상된 뉴로-퍼지 모델링)

  • 김승석;김성수;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.536-543
    • /
    • 2004
  • In this paper, we proposed a new method of modeling a neuro-fuzzy system using a hybrid clustering algorithm. The initial parameters and the number of clusters of the proposed system are optimally chosen simultaneously with respect to the process of regression, which is a unique characteristics of the proposed system. The proposed algorithm presented in this work improves the overall performance of the proposed a neuro-fuzzy system by choosing a proper number of clusters adaptively according the characteristics of given data. The process of clustering is performed by deciding on the number of classes, which yields the property of convergence of the system. In experiments, the superiority of the proposed neuro-fuzzy system is demonstrated, especially the process of optimizing parameters and clustering of learning speed.

Multiple-Channel Active Noise Control by ANFIS and Independent Component Analysis without Secondary Path Modeling

  • Kim, Eung-Ju;Lee, Sang-yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.1-22
    • /
    • 2001
  • In this paper we present Multiple-Channel Active Noise Control[ANC] system by employing Independent Component Analysis[ICA] and Adaptive Network Fuzzy Inference System[ANFIS]. ICA is widely used in signal processing and communication and it use prewhiting and appropriate choice of non-linearities, ICA can separate mixed signal. ANFIS controller is trained with the hybrid learning algorithm to optimize its parameters for adaptively canceling noise. This new method which minimizes a statistical dependency of mutual information(MI) in mixed low frequency noise signal and there is no need to secondary path modeling. The proposed implementations achieve more powerful and stable noise reduction than Filtered-X LMS algorithms which is needed for LTI assumption and precise secondary error

  • PDF

An Empiricl Study on the Learnign of HMM-Net Classifiers Using ML/MMSE Method (ML/MMSE를 이용한 HMM-Net 분류기의 학습에 대한 실험적 고찰)

  • Kim, Sang-Woon;Shin, Seong-Hyo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The HMM-Net is a neural network architecture that implements the computation of output probabilities of a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria of maximum likehood(ML) and minimization of mean squared error(MMSE) are used for learning HMM-Net classifiers. The criterion MMSE is better than ML when initial learning condition is well established. However Ml is more useful one when the condition is incomplete[3]. Therefore we propose an efficient learning method of HMM-Net classifiers using a hybrid criterion(ML/MMSE). In the method, we begin a learning with ML in order to get a stable start-point. After then, we continue the learning with MMSE to search an optimal or near-optimal solution. Experimental results for the isolated numeric digits from /0/ to /9/, a training and testing time-series pattern set, show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm (인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.

Finite Element Analysis Study of CJS Composite Structural System with CFT Columns and Composite Beams (CFT기둥과 합성보로 구성된 CJS합성구조시스템의 유한요소해석 연구)

  • Moon, A Hae;Shin, Jiuk;Lim, Chang Gue;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • This paper presents the effect on the inelastic behavior and structural performance of concrete and filled steel pipe through a numerical method for reliable judgment under various load conditions of the CJS composite structural system. Variable values optimized for the CJS synthetic structural system and the effects of multiple variables used for finite element analysis to present analytical modeling were compared and analyzed with experimental results. The Winfrith concrete model was used as a concrete material model that describes the confinement effect well, and the concrete structure was modeled with solid elements. Through geometric analysis of shell and solid elements, rectangular steel pipe columns and steel elements were modeled as shell elements. In addition, the slip behavior of the joint between the concrete column and the rectangular steel pipe was described using the Surface-to-Surface function. After finite element analysis modeling, simulation was performed for cyclic loading after assuming that the lower part of the foundation was a pin in the same way as in the experiment. The analysis model was verified by comparing the calculated analysis results with the experimental results, focusing on initial stiffness, maximum strength, and energy dissipation capability.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

A Classification Analysis using Bayesian Neural Network (베이지안 신경망을 이용한 분류분석)

  • Hwang, Jin-Soo;Choi, Seong-Yong;Jun, Hong-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.11-25
    • /
    • 2001
  • There are several algorithms for classification in modeling relations, patterns, and rules which exist in data. We learn to classify objects on the basis of instances presented to us, not by being given a set of classification rules. The Bayesian learning uses the probability distribution to express our knowledge about unknown parameters and update our knowledge by the law of probability as the evidence gathered from data. Also, the neural network models are designed for predicting an unknown category or quantity on the basis of known attributes by training. In this paper, we compare the misclassification error rates of Bayesian Neural Network method with those of other classification algorithms, CHAID, CART, and QUBST using several data sets.

  • PDF