• Title/Summary/Keyword: Learning Elements

Search Result 1,186, Processing Time 0.028 seconds

Damage localization and quantification of a truss bridge using PCA and convolutional neural network

  • Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.673-686
    • /
    • 2022
  • Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.

COVID-19 Diagnosis from CXR images through pre-trained Deep Visual Embeddings

  • Khalid, Shahzaib;Syed, Muhammad Shehram Shah;Saba, Erum;Pirzada, Nasrullah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.175-181
    • /
    • 2022
  • COVID-19 is an acute respiratory syndrome that affects the host's breathing and respiratory system. The novel disease's first case was reported in 2019 and has created a state of emergency in the whole world and declared a global pandemic within months after the first case. The disease created elements of socioeconomic crisis globally. The emergency has made it imperative for professionals to take the necessary measures to make early diagnoses of the disease. The conventional diagnosis for COVID-19 is through Polymerase Chain Reaction (PCR) testing. However, in a lot of rural societies, these tests are not available or take a lot of time to provide results. Hence, we propose a COVID-19 classification system by means of machine learning and transfer learning models. The proposed approach identifies individuals with COVID-19 and distinguishes them from those who are healthy with the help of Deep Visual Embeddings (DVE). Five state-of-the-art models: VGG-19, ResNet50, Inceptionv3, MobileNetv3, and EfficientNetB7, were used in this study along with five different pooling schemes to perform deep feature extraction. In addition, the features are normalized using standard scaling, and 4-fold cross-validation is used to validate the performance over multiple versions of the validation data. The best results of 88.86% UAR, 88.27% Specificity, 89.44% Sensitivity, 88.62% Accuracy, 89.06% Precision, and 87.52% F1-score were obtained using ResNet-50 with Average Pooling and Logistic regression with class weight as the classifier.

An Artificial Intelligent based Learning Model for BIM Elements Usage (건축 부재 사용량 예측을 위한 인공지능 학습 모델)

  • Beom-Su Kim;Jong-Hyeok Park;Soo-Hee Han;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • This study described a method of designing and implementing an artificial intelligence-based learning model for predicting the usage of building members. Artificial intelligence (AI) is widely used in various fields thanks to the development of technology, but in the field of building information management (BIM), the case of utilizing AI technology is very low due to the specificity of the data in the field and the difficulty of collecting big data. Therefore, AI problems for BIM were discovered, and a new preprocessing technique was devised to solve the specificity of data in the field. An artificial intelligence model was implemented based on the designed preprocessing technique, and it was confirmed that the accuracy of predicting the construction component usage of the implemented artificial intelligence model is at a level that can be used in the actual industry.

Comparison of Recurring Decimal Contents in Korean and Japanese Mathematics Textbooks (우리나라와 일본 수학 교과서의 순환소수 내용 비교)

  • Kim, Bumi
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.4
    • /
    • pp.375-396
    • /
    • 2022
  • In this paper, to provide an idea for the 2022 revised mathematics curriculum by restructuring the content of the 2015 mathematics curriculum, the content elements of recurring decimals of textbooks, which showed differences in the curriculum of Korea and Japan, were analyzed. As a result of this study, in Korea, before the introduction of the concept of irrational numbers, repeating decimals were defined in the second year of middle school, and the relationship between repeating decimals and rational numbers was dealt with. In Japan, after studying irrational numbers in the third year of middle school, the terminology of repeating decimals is briefly dealt with. Then, when learning the concept of limit in the high school <Mathematics III> subject, the relationship between rational numbers and repeating decimals is dealt with. Based on the results of the study, in relation to the optimization of the amount of learning in the 2022 curriculum revision, implications for the introduction period of the circular decimal number, alternatives to the level of its content, and the teaching and learning methods were proposed.

Development and Validation of Yut-nori Program using Educational Programming Language (EPL) based on Computational Thinking (컴퓨팅 사고력 기반 교육용 프로그래밍 언어(EPL) 활용 윷놀이 프로그램 개발 및 타당성 검증)

  • JeongBeom, Song
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2023
  • In Korea, software education is implemented from elementary school. As a representative software education tool for elementary schools, various chess games reconstructed based on the rules of Western chess games are being used. On the other hand, Yutnori, one of our traditional games, also includes elements of software education, so research on this is needed. Therefore, in this study, a Yutnori program based on computational thinking using an educational programming language, Entry, and a turtle robot was developed and its validity verified. As a result of the validity verification, the CVR value was higher than 0.7 in the degree of agreement with the subject achievement standard (3 questions), the appropriateness of learning materials (4 questions), and the possibility of class application (3 questions). Therefore, it could be judged that the learning program developed in this study has a high level of agreement with the subject achievement standards, appropriate learning materials, and high possibility of being applied to classes. In order to generalize this content in the future, the effectiveness will need to be verified, and experimental research will be needed to understand this.

Proposed Pre-Processing Method for Improving Pothole Dataset Performance in Deep Learning Model and Verification by YOLO Model (딥러닝 모델에서 포트홀 데이터셋의 성능 향상을 위한 전처리 방법 제안과 YOLO 모델을 통한 검증)

  • Han-Jin Lee;Ji-Woong Yang;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.249-255
    • /
    • 2022
  • Potholes are an important clue to the structural defects of asphalt pavement and cause many casualties and property damage. Therefore, accurate pothole detection is an important task in road surface maintenance. Many machine learning technologies are being introduced for pothole detection, and data preprocessing is required to increase the efficiency of deep learning models. In this paper, we propose a preprocessing method that emphasizes important textures and shapes in pothole datasets. The proposed preprocessing method uses intensity transformation to reduce unnecessary elements of the road and emphasize the texture and shape of the pothole. In addition, the feature of the porthole is detected using Superpixel and Sobel edge detection. Through performance comparison between the proposed preprocessing method and the existing preprocessing method, it is shown that the proposed preprocessing method is a more effective method than the existing method in detecting potholes.

Language-based Classification of Words using Deep Learning (딥러닝을 이용한 언어별 단어 분류 기법)

  • Zacharia, Nyambegera Duke;Dahouda, Mwamba Kasongo;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.411-414
    • /
    • 2021
  • One of the elements of technology that has become extremely critical within the field of education today is Deep learning. It has been especially used in the area of natural language processing, with some word-representation vectors playing a critical role. However, some of the low-resource languages, such as Swahili, which is spoken in East and Central Africa, do not fall into this category. Natural Language Processing is a field of artificial intelligence where systems and computational algorithms are built that can automatically understand, analyze, manipulate, and potentially generate human language. After coming to discover that some African languages fail to have a proper representation within language processing, even going so far as to describe them as lower resource languages because of inadequate data for NLP, we decided to study the Swahili language. As it stands currently, language modeling using neural networks requires adequate data to guarantee quality word representation, which is important for natural language processing (NLP) tasks. Most African languages have no data for such processing. The main aim of this project is to recognize and focus on the classification of words in English, Swahili, and Korean with a particular emphasis on the low-resource Swahili language. Finally, we are going to create our own dataset and reprocess the data using Python Script, formulate the syllabic alphabet, and finally develop an English, Swahili, and Korean word analogy dataset.

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

A Study on the Development of Lesson Plan and Effectiveness Analysis for "Library and Information Life" Subjects using Gagné's Instructional Events Theory (가네의 교수사태 이론을 적용한 "도서관과 정보생활" 교과목 지도안 개발 및 효과분석에 관한 연구)

  • Seong-Hwa Jeong;Byeong-Ki Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.4
    • /
    • pp.5-27
    • /
    • 2023
  • Gagné proposed nine instructional events, gain attention of the students, inform students of the objectives, stimulate recall of prior learning, present the content, provide learning guidance, elicit performance(practice), provide feedback, assess performance, enhance retention and transfer for effective teaching & learning practice. Gagné's theory is widely applied in various subjects because it increases student participation and allows classes to be developed systematically. The purpose of this study is to develop a lesson plans for the 'library and information life' subjects in middle school using Gagné's nine instructional events theory, conduct actual instructions, and verify its effectiveness. The research procedure was conducted as follows. Development of lesson plan that using Gagné's theory to Section III (Information Analysis and Interpretation) of 'Library and Information Life' in middle school. Actual instruction were conducted and student survey, peer teacher assessment, and instructor self-assessment were conducted. Based on the evaluation results, a elements to revise and improve the lesson plan was presented.

Search Re-ranking Through Weighted Deep Learning Model (검색 재순위화를 위한 가중치 반영 딥러닝 학습 모델)

  • Gi-Taek An;Woo-Seok Choi;Jun-Yong Park;Jung-Min Park;Kyung-Soon Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.221-226
    • /
    • 2024
  • In information retrieval, queries come in various types, ranging from abstract queries to those containing specific keywords, making it a challenging task to accurately produce results according to user demands. Additionally, search systems must handle queries encompassing various elements such as typos, multilingualism, and codes. Reranking is performed through training suitable documents for queries using DeBERTa, a deep learning model that has shown high performance in recent research. To evaluate the effectiveness of the proposed method, experiments were conducted using the test collection of the Product Search Track at the TREC 2023 international information retrieval evaluation competition. In the comparison of NDCG performance measurements regarding the experimental results, the proposed method showed a 10.48% improvement over BM25, a basic information retrieval model, in terms of search through query error handling, provisional relevance feedback-based product title-based query expansion, and reranking according to query types, achieving a score of 0.7810.