• 제목/요약/키워드: Learning Data Model

검색결과 4,644건 처리시간 0.035초

냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구 (A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types)

  • 이강배;박성호;이희원;이승재;이승현
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.31-37
    • /
    • 2021
  • 산업의 발전으로 도시화로 인해 건물의 규모가 커지면서, 건물의 공기 정화 및 쾌적한 실내 환경을 유지의 필요성 또한 증가하고 있다. 냉동 시스템의 모니터링 기술의 발전으로 건물 내에 발생하는 전력 소모량을 관리할 수 있게 되었다. 특히 상업용 건물에서 발생하는 전력 소모량 중 약 40%가 냉동 시스템에서 일어난다. 따라서 본 연구 냉동시스템 고장진단 알고리즘을 개발하기 위해서 냉동시스템의 구조를 이해하고, 냉동 시스템의 운영과정에서 발생하는 데이터를 수집 분석하여 다양한 유형과 심각도를 가지는 고장 상황을 조기에 신속하게 탐지 분류하고자 하였다. 특히 분류가 어려운 고장 유형들의 분류 정확도를 향상시키기 위하여 3단계 진단 및 분류 알고리즘을 개발하여 제안하였다. 다수의 실험과 초모수 (hyper parameter) 최적화 과정을 거쳐 각 단계에 적합한 분류 모형으로 SVM과 LGBM에 기반 한 모형을 제시하였다. 본 연구에서는 고장에 영향을 미치는 특성을 최대한 보존하면서, 선행연구에서 어려움을 겪었던 냉매 관련 고장을 포함한 모든 고장 유형을 우수한 결과로 도출하였다.

HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할 (Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models)

  • 김형우;장선웅;박수호;공신우;곽지우;김진수;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.913-924
    • /
    • 2022
  • 이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.

무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가 (Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area)

  • 박건웅;송봉근;박경훈;이흥규
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.63-80
    • /
    • 2022
  • 현실의 공간을 가상의 공간으로 구현하여 문제를 분석하고 예측하는 기술이 개발되면서, 복잡한 도시 내의 정밀한 공간정보를 취득하는 것이 중요해지고 있다. 본 연구는 복잡한 경관을 가진 도시지역을 대상으로 무인항공기를 통해 영상을 취득하고 고해상도 영상에 적합한 영상분류 기법인 객체기반 영상분석 기법과 의미론적 분할 기법을 적용하여 토지피복 분류를 수행하였다. 또한, 동일시기에 수집된 영상을 바탕으로 인공지능이 학습하지 않은 지역에 대해 각 인공지능 모형의 토지피복 분류 재현성을 확인하고자 하였다. 학습 지역을 대상으로 인공지능 모형을 학습하였을 때, 토지피복 분류 정확도가 OBIA-RF는 89.3%, OBIA-DNN은 85.0%, U-Net의 경우 95.3%로 분석되었다. 재현성을 평가하기 위해 검증 지역에 인공지능 모형을 적용하였을 때, OBIA-RF는 7%, OBIA-DNN은 2.1%, U-Net은 2.3%의 정확도가 감소하였다. 형태학적인 특성과 분광학적인 특성을 모두 고려한 U-Net이 토지피복 분류 정확도 및 재현성 평가에서 우수한 성능을 보이는 것으로 나타났다. 본 연구의 결과는 정밀한 공간정보가 중요해짐에 따라 기초자료 생성 방법으로써 도시환경 연구분야에 기여할 수 있을 것으로 판단된다.

자본시장 IT시스템 효율적 용량계획 모델: 심리지수 활용을 중심으로 (Effective Capacity Planning of Capital Market IT System: Reflecting Sentiment Index)

  • 이국형;김미예;박재영;김범수
    • 지식경영연구
    • /
    • 제23권1호
    • /
    • pp.89-109
    • /
    • 2022
  • 최근 COVID-19, 동학개미운동 등 투자환경의 변화로 시스템 처리 허용 수준을 상회하는 트랜잭션이 발생하고 이로 인해 전산장애가 자본시장에서 빈번하게 나타나고 있다. 자본시장 IT시스템들은 장애 영향도가 매우 큰 시스템들로서, 2020년에 예측하지 못한 큰 규모의 트랜잭션이 상당한 기간 유입되어 전산장애가 급증하였다. 다수의 기업들이 높은 수준의 IT시스템 용량계획 정책을 유지하고 있던 상황임에도 불구하고, 이를 상회하는 트랜잭션이 유입된 것은 용량계획에 대한 새로운 접근 방법이 필요함을 시사하고 있다. 이에 본 연구는 다양한 머신러닝 기법을 활용하여 자본시장 IT시스템 용량계획 모델들을 개발하고 성능을 비교 분석한다. 또한, 동학개미운동과 같이 예측하기 힘든 투자자의 행동을 반영할 수 있는 심리지수를 예측에 활용함으로써 용량계획 모델의 성능을 높인다. COVID-19 기간을 포함한 실증데이터를 이용하여 본 연구에서 개발한 용량계획 모델은 실무에서 활용 가능한 수준의 높은 성능과 안정성을 가질 수 있다. 본 연구는 기업의 비용 효율성과 IT시스템 용량 변경에 수반되는 운영상의 제약을 모두 고려한 최적의 파라미터를 제시하였는데, 이것은 자본시장 도메인에서 유용하게 사용될 수 있다. 또한, 본 연구는 투자자의 심리를 반영하는 심리지수가 IT 시스템 용량계획에 중요한 예측요인이 될 수 있는 것을 입증함으로써, 심리지수가 다양한 수요예측에 적극적으로 활용될 수 있음을 보여준다.

사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구 (Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study)

  • 윤예빈;허진행;김예지;조혜진;윤용수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권4호
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

미국의 레슨 스터디 실행 사례 연구: 교사주도의 학교 교육개혁의 대안적 모델 (A Case Study of 'Lesson Study' in an U.S. School: As an Alternative Model for Teacher-led School Reform)

  • 유솔아
    • 비교교육연구
    • /
    • 제20권2호
    • /
    • pp.95-128
    • /
    • 2010
  • 본 연구는 교사 전문성 신장을 통한 학교 교육 개혁의 유효한 방안 중 하나로 평가되는 '레슨 스터디(Lesson Study)' 실행 사례를 소개함으로써 레슨 스터디에 대한 이해와 향후 한국에 레슨 스터디를 효과적으로 도입 실행하기 위한 방향을 제시하는 데 목적이 있다. 레슨 스터디는 교실 수업에 대한 교사들의 협력적 연구에 초점을 두어 교사들의 전문성 신장과 학교 교육 개혁을 동시에 꾀하는 접근으로 1999년 TIMSS 연구이후 대학과 연계한 PDS(professional development schools)의 형식으로 많이 행해지고 있다. 본 연구는 미국 서부에 위치한 K-8 학교가 C대학과 협력 관계를 형성하여 레슨 스터디를 진행한 일년 반 동안의 실행 사례에 대한 연구로써 (1) 레슨 스터디가 어떤 과정을 거쳐 진행되는지, (2) 레슨 스터디에 참여한 교사들이 다루는 주된 이슈가 무엇인지, (3) 레슨 스터디가 시간이 지남에 따라 어떤 진보된 모습으로 전개되는지를 분석하고, 끝으로 (4) 한국에 레슨 스터디를 효과적으로 도입, 운영하기 위한 도전적인 과제들을 제언하였다. 그 결과 첫째, 레슨 스터디는 실행 과정에서 다루는 문제의 특징에 따라 연구와 사전준비 단계, 수업 계획 단계, 수업 실행과 관찰 단계, 반성과 개선의 단계, 공유의 단계로 구분될 수 있었다. 둘째, 교사들의 주된 논의 주제는 교수-학습 자료, 질문이나 안내, 개인차, 교육과정, 비판적 이슈들이었으며, 주로 학습자의 이해 및 학습 관점에서 전개되었다. 셋째, 레슨 스터디를 연속적 실행에 따라 나타난 진보적 변화로 유목적적인 토론, 외부로부터의 적극적인 자원 수집, 학습자 중심의 관점 유지, 선형적 단계에서 순환적 단계로의 변화가 관찰되었다. 넷째, 한국에 레슨 스터디를 효과적으로 도입·실행하기 위한 과제로 지역과 연계한 학습 공동체 구축, 참여 범위 확대를 통한 교사간 이질감 해소, 기술이 아닌 본질에 초점을 둔 도입과 실행, 수학 외 다른 교과에의 적용 또는 통합교과적 접근의 시도, 그리고 레슨 스터디에 참여하는 교사들에 대한 심리적, 경제적 보상 체제 마련을 제안하였다.

인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발 (Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence)

  • 김성수;손규희;김도연;허장무;김성은
    • 해양환경안전학회지
    • /
    • 제29권1호
    • /
    • pp.24-35
    • /
    • 2023
  • 급격한 산업화와 도시화로 인해 해양 오염이 심각해지고 있으며, 이러한 해양 오염을 실효적으로 관리하기 위해 수질평가지수(Water Quality Index, WQI)를 마련하여 활용하고 있다. 하지만 수질평가지수는 다소 복잡한 계산과정으로 인한 정보의 손실, 기준값 변동, 실무자의 계산오류, 통계적 오류 등의 불확실성(uncertainty)을 내포하고 있다. 이에 따라 국내·외에서 인공지능 기법을 활용하여 수질평가지수를 예측하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 해양환경측정망 자료(2000 ~ 2020년)를 활용하여 우리나라 전 해역 즉, 5개의 생태구에 대한 WQI를 추정할 수 있는 가장 적합한 인공지능기법을 도출하기 위해 총 6가지의 기법(RF, XGBoost, KNN, Ext, SVM, LR)을 실험하였다. 그 결과, Random Forest 기법이 다른 기법에 비해 가장 우수한 성능을 보였다. Random Forest 기법의 WQI 점수 예측값과 실제값의 잔차 분석 결과, 모든 생태구에서 시간적 및 공간적 예측 성능이 우수한 것으로 나타났다. 이를 통해 본 연구에서 개발한 Random Forest 기법은 높은 정확도를 바탕으로 우리나라 전해역에 대한 WQI를 예측 가능할 것으로 사료된다.

ChatGPT는 한국작업치료사면허시험에 합격할 수 있을까? (Can ChatGPT Pass the National Korean Occupational Therapy Licensure Examination?)

  • 홍준화;김나연;민혜민;양하민;이시현;최서진;박진혁
    • 재활치료과학
    • /
    • 제13권1호
    • /
    • pp.65-74
    • /
    • 2024
  • 목적 : 본 연구는 대규모 언어 모델에 기반한 인공지능인 ChatGPT가 한국작업치료사면허시험에 통과할 수 있는지 알아보고자 하였다. 연구방법 : 한국보건의료인국가시험원에서 제공하는 2018년부터 2022년도까지의 한국작업치료사면허시험 문항 중 공개되지 않은 작업치료실기 문항을 제외하고 작업치료학기초, 의료관계법규, 작업치료학 문항을 활용하였다. 시험문항과 함께 가장 적절한 정답을 제시하도록 프롬프트를 영어로 구성하였고 이를 입력한 후 ChatGPT가 제시하는 답을 채점하였다. 2명의 연구자가 독립적으로 전체 과정을 진행하였으며, 2명의 연구자 채점한 정확도를 평균으로 5개년도의 시험에 대한 합격 여부를 확인하였고 연구자 간 ChatGPT 답에 대한 일치도를 확인하였다. 결과 : ChatGPT는 2020년에서만 합격하였고 나머지 4개년도 시험은 탈락권 점수를 보였다. 구체적으로 의료관계법규 문항의 정확도는 25~57% 범위를 보였고 다른 문항의 정확도는 모두 60% 이상을 기록하였다. 또한 의료관계법규 문항을 제외한 연구자 간 ChatGPT는 높은 일치도를 보였으며, 이는 정확도와 유의미한 상관관계를 보였다. 결론 : 언어나 문화권에 영향을 받는 문항의 경우 아직 ChatGPT를 적용하는 데 제한이 있음을 확인하였다. 추후 프롬프트의 최적화 작업과 함께 지속적인 데이터의 학습에 따라 작업치료학을 전공하는 학생들의 학습 도구로서 활용될 수 있는지에 대한 지속적인 연구가 필요하다.

과학중점학교 학생의 블록코딩 플랫폼 KNIME을 활용한 과학-AI 융합 수업 경험 분석 (An Analysis of Students' Experiences Using the Block Coding Platform KNIME in a Science-AI Convergence Class at a Science Core High School)

  • 홍의정;신은혜;장진섭;채승철
    • 한국과학교육학회지
    • /
    • 제44권2호
    • /
    • pp.141-153
    • /
    • 2024
  • 2022 개정 과학과 교육과정은 AI를 활용한 탐구 활동을 경험함으로써 융합적 사고를 바탕으로 일상생활과 사회 속 과학 문제를 해결할 수 있는 능력을 기르는 것을 목표로 한다. 이에 과학 교과와 AI를 융합한 과학-AI 융합교육 프로그램을 개발하고 이를 활용하여 고등학생을 대상으로 융합 수업을 진행하였다. 과학-AI 융합 수업은 감쇠진자의 운동을 정성적으로 이해하고 블록코딩 플랫폼 KNIME을 사용하여 진자의 위치를 예측할 수 있는 AI 모델을 구축하는 것을 목표로 한다. 개별 심층 면담을 통해 학습자의 경험을 이해하고 해석하고자 하였다. Giorgi의 현상학적 연구 방법론을 바탕으로 학습자의 참여 동기, 배움과 변화, 어려움과 수업의 한계를 기술하였다. 학생들은 AI에 대한 관심과 사회적 트렌드에 대한 인식을 바탕으로 수업에 참여하고자 하는 동기를 가지고 있었다. 학생들은 직접 데이터를 수집하고 AI 모델을 구축하는 것을 배웠다. 실험 결과를 바탕으로 주변 현상을 예측할 수 있을 것으로 기대하였으며 융합 수업을 긍정적으로 인식하였다. 한편, 여전히 익숙하지 않은 플랫폼, AI 원리 이해를 어려움으로 인식하였고 따라해야만 하는 수업 방식의 한계와 수업 내용상의 한계를 인식하였다. 융합 수업의 경험은 실생활의 문제를 AI를 통해 해결하고자 하는 학습 동기로 나타났으며, 학생들이 느낀 어려움과 한계는 더 심화되고 확장된 주제를 학습하고 싶은 동기로 이어졌다. 이를 바탕으로 과학-AI 융합 수업을 위한 논의 및 제언을 도출하였다. 본 연구는 과학-AI 융합 수업을 개발하고 이를 현장에 적용할 때 시사점을 제공할 것으로 기대된다.

공급업체의 흡수능력, 지식창출, 지적자본 및 경쟁우위에 관한 연구 (Research on Supplier's Absorptive Capacity, Knowledge Creation, Intellectual Capital and Competitive Advantage)

  • 왕사초;이염남
    • 디지털융복합연구
    • /
    • 제21권3호
    • /
    • pp.1-14
    • /
    • 2023
  • 변기업은 변화하는 환경 속에서 생존하기 위해 다양한 전략으로 경쟁우위를 창출하고자 한다. 이에, 경쟁우위를 창출하는 방법에 대한 연구도 끊임없이 전개되고 있다. 이러한 상황은 기업의 혁신능력을 강화하도록 촉구하며 또한 지식창출의 변화가 매우 중요한 역할이 되었다는 것을 의미한다. 본 연구는 자원기반 관점을 바탕으로 지적자본과 흡수능력 프레임워크가 경쟁우위에 미치는 영향을 살펴보는 것을 목적으로 한다. 이에, 한국 중소기업의 샘플을 통해 지식흡수능력, 지식 창출, 지적 자본 및 내/외부 소스의 경쟁 우위 사이의 연계를 수행하는지 확인해보고자 한다. 이러한 목적을 검증하기 위해 15개 산업에서 106개의 공급업체의 설문이 수집되었다. 연구 모델은 SEM(구조 방정식 모델링)을 채택하고 AMOS 22를 적용하여 분석하였다. 분석 결과, 모든 가설은 채택되었다. 따라서 본 연구는 흡수 능력이 공급업체의 경쟁 우위를 키우는 데 있어 중요한 요소임을 의미한다. 또한, 지적 자본은 공급업체의 지식 재고의 중요한 구성 요소로 간주되어야 하며, 이것이 경쟁력에 대한 흡수 능력 영향을 크게 강화한다는 것을 제시한다. 향후 연구는 연구 모델을 다양한 국제적 환경이나 다국적 기업에서 검증하여 일반화 가능성을 향상시키는 것을 목표로 할 것이다.