• 제목/요약/키워드: Learning Data Model

검색결과 4,644건 처리시간 0.038초

A Machine Learning Model for Predicting Silica Concentrations through Time Series Analysis of Mining Data (광업 데이터의 시계열 분석을 통해 실리카 농도를 예측하기 위한 머신러닝 모델)

  • Lee, Seung Hoon;Yoon, Yeon Ah;Jung, Jin Hyeong;Sim, Hyun su;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • 제48권3호
    • /
    • pp.511-520
    • /
    • 2020
  • Purpose: The purpose of this study was to devise an accurate machine learning model for predicting silica concentrations following the addition of impurities, through time series analysis of mining data. Methods: The mining data were preprocessed and subjected to time series analysis using the machine learning model. Through correlation analysis, valid variables were selected and meaningless variables were excluded. To reflect changes over time, dependent variables at baseline were treated as independent variables at later time points. The relationship between independent variables and the dependent variable after n point was subjected to Pearson correlation analysis. Results: The correlation (R2) was strongest after 3 hours, which was adopted as a dependent variable. According to root mean square error (RMSE) data, the proposed method was superior to the other machine learning methods. The XGboost algorithm showed the best predictive performance. Conclusion: This study is important given the current lack of machine learning studies pertaining to the domestic mining industry. In addition, using time series analysis in mining data will show further improvement. Before establishing a predictive model for the proposed method, predictions should be made using data with time series characteristics. After doing this work, it should also improve prediction accuracy in other domains.

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권12호
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

A Design of u-Learning's Teaching and Learning Model in the Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 u-러닝 교수학습 모형 설계)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • 제13권5호
    • /
    • pp.781-786
    • /
    • 2009
  • The cloud computing environment is a new trend of web based application parts. It can be IT business model that is able to easily support learning service and allocate resources through the internet to users. U-learning also is a maximal model with efficiency of the internet based learning. Thus, in this research, we proposed a design of u-learning's teaching and learning model that is applying the internet based learning. Proposal method is to fit u-learning and has 7 steps: Preparing, planning, gathering, learning process, analysis and evaluation, and feedback. We make a cloud u-learning server and cloud LMS to process and manage the service. And We also make a mobile devices meta data to aware the model.

  • PDF

A Study on Cathodic Protection Rectifier Control of City Gas Pipes using Deep Learning (딥러닝을 활용한 도시가스배관의 전기방식(Cathodic Protection) 정류기 제어에 관한 연구)

  • Hyung-Min Lee;Gun-Tek Lim;Guy-Sun Cho
    • Journal of the Korean Institute of Gas
    • /
    • 제27권2호
    • /
    • pp.49-56
    • /
    • 2023
  • As AI (Artificial Intelligence)-related technologies are highly developed due to the 4th industrial revolution, cases of applying AI in various fields are increasing. The main reason is that there are practical limits to direct processing and analysis of exponentially increasing data as information and communication technology develops, and the risk of human error can be reduced by applying new technologies. In this study, after collecting the data received from the 'remote potential measurement terminal (T/B, Test Box)' and the output of the 'remote rectifier' at that time, AI was trained. AI learning data was obtained through data augmentation through regression analysis of the initially collected data, and the learning model applied the value-based Q-Learning model among deep reinforcement learning (DRL) algorithms. did The AI that has completed data learning is put into the actual city gas supply area, and based on the received remote T/B data, it is verified that the AI responds appropriately, and through this, AI can be used as a suitable means for electricity management in the future. want to verify.

Host-Based Intrusion Detection Model Using Few-Shot Learning (Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델)

  • Park, DaeKyeong;Shin, DongIl;Shin, DongKyoo;Kim, Sangsoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제10권7호
    • /
    • pp.271-278
    • /
    • 2021
  • As the current cyber attacks become more intelligent, the existing Intrusion Detection System is difficult for detecting intelligent attacks that deviate from the existing stored patterns. In an attempt to solve this, a model of a deep learning-based intrusion detection system that analyzes the pattern of intelligent attacks through data learning has emerged. Intrusion detection systems are divided into host-based and network-based depending on the installation location. Unlike network-based intrusion detection systems, host-based intrusion detection systems have the disadvantage of having to observe the inside and outside of the system as a whole. However, it has the advantage of being able to detect intrusions that cannot be detected by a network-based intrusion detection system. Therefore, in this study, we conducted a study on a host-based intrusion detection system. In order to evaluate and improve the performance of the host-based intrusion detection system model, we used the host-based Leipzig Intrusion Detection-Data Set (LID-DS) published in 2018. In the performance evaluation of the model using that data set, in order to confirm the similarity of each data and reconstructed to identify whether it is normal data or abnormal data, 1D vector data is converted to 3D image data. Also, the deep learning model has the drawback of having to re-learn every time a new cyber attack method is seen. In other words, it is not efficient because it takes a long time to learn a large amount of data. To solve this problem, this paper proposes the Siamese Convolutional Neural Network (Siamese-CNN) to use the Few-Shot Learning method that shows excellent performance by learning the little amount of data. Siamese-CNN determines whether the attacks are of the same type by the similarity score of each sample of cyber attacks converted into images. The accuracy was calculated using Few-Shot Learning technique, and the performance of Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN was compared to confirm the performance of Siamese-CNN. As a result of measuring Accuracy, Precision, Recall and F1-Score index, it was confirmed that the recall of the Siamese-CNN model proposed in this study was increased by about 6% from the Vanilla-CNN model.

Predicting Students' Engagement in Online Courses Using Machine Learning

  • Alsirhani, Jawaher;Alsalem, Khalaf
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.159-168
    • /
    • 2022
  • No one denies the importance of online courses, which provide a very important alternative, especially for students who have jobs that prevent them from attending face-to-face in traditional classes; Engagement is one of the most important fundamental variables that indicate the course's success in achieving its objectives. Therefore, the current study aims to build a model using machine learning to predict student engagement in online courses. An online questionnaire was prepared and applied to the students of Jouf University in the Kingdom of Saudi Arabia, and data was obtained from the input variables in the questionnaire, which are: specialization, gender, academic year, skills, emotional aspects, participation, performance, and engagement in the online course as a dependent variable. Multiple regression was used to analyze the data using SPSS. Kegel was used to build the model as a machine learning technique. The results indicated that there is a positive correlation between the four variables (skills, emotional aspects, participation, and performance) and engagement in online courses. The model accuracy was very high 99.99%, This shows the model's ability to predict engagement in the light of the input variables.

1D CNN and Machine Learning Methods for Fall Detection (1D CNN과 기계 학습을 사용한 낙상 검출)

  • Kim, Inkyung;Kim, Daehee;Noh, Song;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제10권3호
    • /
    • pp.85-90
    • /
    • 2021
  • In this paper, fall detection using individual wearable devices for older people is considered. To design a low-cost wearable device for reliable fall detection, we present a comprehensive analysis of two representative models. One is a machine learning model composed of a decision tree, random forest, and Support Vector Machine(SVM). The other is a deep learning model relying on a one-dimensional(1D) Convolutional Neural Network(CNN). By considering data segmentation, preprocessing, and feature extraction methods applied to the input data, we also evaluate the considered models' validity. Simulation results verify the efficacy of the deep learning model showing improved overall performance.

Effect of deep transfer learning with a different kind of lesion on classification performance of pre-trained model: Verification with radiolucent lesions on panoramic radiographs

  • Yoshitaka Kise;Yoshiko Ariji;Chiaki Kuwada;Motoki Fukuda;Eiichiro Ariji
    • Imaging Science in Dentistry
    • /
    • 제53권1호
    • /
    • pp.27-34
    • /
    • 2023
  • Purpose: The aim of this study was to clarify the influence of training with a different kind of lesion on the performance of a target model. Materials and Methods: A total of 310 patients(211 men, 99 women; average age, 47.9±16.1 years) were selected and their panoramic images were used in this study. We created a source model using panoramic radiographs including mandibular radiolucent cyst-like lesions (radicular cyst, dentigerous cyst, odontogenic keratocyst, and ameloblastoma). The model was simulatively transferred and trained on images of Stafne's bone cavity. A learning model was created using a customized DetectNet built in the Digits version 5.0 (NVIDIA, Santa Clara, CA). Two machines(Machines A and B) with identical specifications were used to simulate transfer learning. A source model was created from the data consisting of ameloblastoma, odontogenic keratocyst, dentigerous cyst, and radicular cyst in Machine A. Thereafter, it was transferred to Machine B and trained on additional data of Stafne's bone cavity to create target models. To investigate the effect of the number of cases, we created several target models with different numbers of Stafne's bone cavity cases. Results: When the Stafne's bone cavity data were added to the training, both the detection and classification performances for this pathology improved. Even for lesions other than Stafne's bone cavity, the detection sensitivities tended to increase with the increase in the number of Stafne's bone cavities. Conclusion: This study showed that using different lesions for transfer learning improves the performance of the model.

Novel Image Classification Method Based on Few-Shot Learning in Monkey Species

  • Wang, Guangxing;Lee, Kwang-Chan;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제19권2호
    • /
    • pp.79-83
    • /
    • 2021
  • This paper proposes a novel image classification method based on few-shot learning, which is mainly used to solve model overfitting and non-convergence in image classification tasks of small datasets and improve the accuracy of classification. This method uses model structure optimization to extend the basic convolutional neural network (CNN) model and extracts more image features by adding convolutional layers, thereby improving the classification accuracy. We incorporated certain measures to improve the performance of the model. First, we used general methods such as setting a lower learning rate and shuffling to promote the rapid convergence of the model. Second, we used the data expansion technology to preprocess small datasets to increase the number of training data sets and suppress over-fitting. We applied the model to 10 monkey species and achieved outstanding performances. Experiments indicated that our proposed method achieved an accuracy of 87.92%, which is 26.1% higher than that of the traditional CNN method and 1.1% higher than that of the deep convolutional neural network ResNet50.