본 연구는 빅데이터와 키워드 네트워크 분석을 통해 공동선 증진을 위한 미래교육 방향을 탐색함으로써 미래교육의 방향성 제안에 대한 기초자료를 제공하는 것을 목적으로 한다. Textom에서 제공하는 빅데이터를 기반으로 '미래교육 + 공통선'이라는 키워드로 데이터를 수집한 후 키워드 네트워크 분석을 수행했다. 연구결과 '공익', '사회', 'KAIST 미래경고', '대책', '연구', '미래교육', '정치' 등이 공동선을 위한 미래교육의 사회적 인식에서 공통 키워드인 것으로 나타났다. 이번 연구결과는 공동선 증진을 위한 미래교육에 대한 사회적 인식이 인간, 물리적 환경, 사회적 대응, 학문적 관심, 교육정책, 교육계획 및 관련 변수와 밀접한 관련이 있음을 시사한다. 이와 같은 결과를 바탕으로 공동선 증진을 위한 미래교육의 방향성 제안을 위한 기초자료 마련에 의미 있는 시사점을 제시하였다.
This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.
본 연구는 중장년 고용취약계층의 경력역량을 탐색하고 우선순위를 도출함으로써, 중장년 고용취약계층을 위한 체계적 경력개발 및 인적자원개발의 단초를 제공하기 위한 목적으로 실시되었다. 중장년(만 40~64세) 고용취약계층 대상 인터뷰 및 전문가 검증을 통해 도출한 주요 연구결과는 다음과 같다. 첫째, 중장년 고용취약계층은 직업, 현재 상태 등 개인 특성에 따라 상이한 경력요구사항이 존재하는 것으로 나타났다. 둘째, 중장년 고용취약계층 경력역량은 크게 경력인지역량, 경력방법역량, 경력태도역량, 경력전환역량, 경력자원관리역량의 5개 구성요인과 21개의 하위 세부역량으로 도출되었다. 셋째, Borich 및 Locus for Focus 분석방법을 활용한 중장년 고용취약계층 경력역량에 대한 우선순위 분석 결과, 경력목표설정, 경력실행력, 취창업정보, 구직기술이 최우선순위 역량으로, 경력정체성, 디지털문해력, 고용시장지식, 인프라활용이 차우선순위 역량으로 도출되었다.
The purpose of this study is to identify the difference between the current retention level and the required level of engineering students' career competency that they think they need based on their perceptions. Ultimately, the results of this study are used as basic data when designing the major/general education program and the curricular/extra-curricular career program. The task of this study is to identify the difference between the current retention level and the required level of engineering students' career competency. And based on this, it is to confirm the educational needs of engineering students for the career competency. For this purpose, literature research on career competency education in universities was reviewed in the theoretical background. Next, previous studies on career competency and sub-competence derived from career competency-related studies and detailed questions were analyzed. Based on this, an initial evaluation tool for career competency of engineering students was developed. Finally, through expert review, a career competency evaluation tool with a total of 43 items in 10 competency groups was developed. A career competency evaluation questionnaire was conducted for 197 engineering students who participated in the 2022 Engineering Education Festa, and as a result of the IPA analysis, 'global competency' was found to be the competency with the largest difference between importance and execution. Next, 'major job competency' and 'career development competency' appeared in order. Reflecting the results of this study, it is expected that mutually organic design of competency-based liberal arts curriculum and major curriculum that can cultivate global competency, major job competency, and career development capability will be carried out through learning activities and field practice.
최근 소프트웨어 역량이 강조됨에 따라 대학에서는 전공 구분없이 모든 학생들에게 소프트웨어 교육을 진행하고 있다. 비전공자들은 소프트웨어 교육에 대한 동기부여가 부족하고, 생소한 학습 콘텐츠에 대한 체감 난이도가 높은 문제가 있다. 이를 해결하기 위해 학습자 특성에 맞는 소프트웨어 교육을 제공해야 한다. 예술계열 학생들은 시각에 대한 이해와 표현력이 뛰어나므로 시각적 문해력을 활용하면 프로그래밍 교육의 학습효과를 높일 수 있다고 본다. 본 연구에서는 일상의 문제를 순서도와 의사코드로 분해하여 절차적으로 시각적 이미지를 구성한다. 이를 교육용 프로그래밍 언어인 플레이봇을 이용하여 코딩을 하고 문제를 해결하도록 진행하여 수업의 효과를 분석하고자 한다. 이를 통해 학생들은 프로그래밍의 개념을 이해하고, 문제를 컴퓨팅적 사고로 해결하는 과정을 이해할 수 있으며, 프로그래밍을 자신의 전공에 활용하는 방법을 습득할 수 있을 것으로 기대한다.
지능정보사회는 사물, 지식, 계산을 키워드로 하는 새로운 세계이다. 이 세계에서 교육개혁의 철학적 조건은 무엇인가? 로빈슨과 애로니카(2015)는 현재의 교육개혁이 유기 농업이라는 상징을 중심으로 이루어져야 한다고 주장한바 여기에는 유기체로서의 인간의 존엄성에 대한 문제의식이 담겨 있다. 인간은 지능과 생명의 결합체이다. 인공지능의 개발은 안드로이드의 상호작용 증가에 따른 인간적 본질에 대한 물음을 제기한다. 현실적으로는 딥러닝으로 상징되는 인공지능의 발전이 교육개혁의 조건이 될 것이다. 반면 정보기술과 예술의 결합은 새로운 생명 이미지의 창출을 통해 인공생명의 문제, 곧 생명 자체에 관한 문제를 제기할 것이다. 인간적 본질에 대한 물음이 생명 자체에 관한 물음과 함께 회귀한다. 인공지능과 인공생명이 낳는 철학적 물음은 교육적 물음과 패러독스를 이루어 미래의 교육개혁에 난문(難問)을 던질 것이다.
인공지능의 연구 개발 및 활용에서 윤리의 중요성이 의료분야뿐 아니라 전 사회적으로 점차 널리 인식되고 있다. 이 종설은 영상의학 영상데이터를 인공지능 연구에 활용할 때 개인정보의 보호 및 데이터에 대한 권리 측면에서 윤리적으로 고려할 사항들에 대해서 국내 독자들에게 실용적인 정보를 제공하고자 한다. 따라서 이 글에 담긴 내용은 많은 부분이 관련된 국내 법과 정부 제도에 바탕을 두고 있다. 인공지능의 연구 개발 및 활용에서 개인정보 보호는 매우 중요한 윤리적 원칙이며 연구 데이터의 적절한 가명처리는 개인정보 보호를 위한 핵심 방법이다. 아울러 인공지능 연구 개발에 의료 데이터를 상업적 이해관계를 최소화하며 윤리적으로 공유할 필요성도 부각되고 있다. 연구 데이터 공유는 개인정보 유출의 위험을 증가시키므로 개인정보 보호에 더욱 주의가 필요하다.
Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.
The degree-linked programs for employees, operated by joint training centers in specialized universities that have implemented work-study integrated programs, are educational programs that require an annual government budget of around 80 billion KRW. However, the 70+ universities running these programs face issues such as a decline in academic achievement and an increase in dropout rates among students. In this paper, I conducted multiple regression analysis based on observed and measured information to examine whether the participating students in these programs are achieving an appropriate level of academic performance and to identify the factors that universities need to invest in to achieve that level. To do this, I hypothesized a causal relationship between the university's input factors and students' academic achievement, and used the SPSS program to analyze the statistical data, confirming the validity of the hypothesis. The collected data for the study were obtained through a survey developed using a Likert 4-point scale, which quantified the distribution of grades among students enrolled in IT-related departments offering the degree-linked programs for employees and the emotional contact efforts made by the universities to motivate them for academic success. Particularly, through the results of multiple regression analysis, it was confirmed that these input factors, unlike those for students in general education programs, require more personalized and frequent interactions.
Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
Smart Structures and Systems
/
제33권2호
/
pp.93-103
/
2024
Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.