DOI QR코드

DOI QR Code

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue (Department of Radiology, Kobe University Graduate School of Medicine) ;
  • Ryuji Shimada (Center for Radiology and Radiation Oncology, Kobe University Hospital) ;
  • Eisuke Ueshima (Department of Radiology, Kobe University Graduate School of Medicine) ;
  • Shohei Komatsu (Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine) ;
  • Takeru Yamaguchi (Department of Radiology, Kobe University Graduate School of Medicine) ;
  • Shinji Yabe (Department of Radiology, Kobe University Graduate School of Medicine) ;
  • Yoshiko Ueno (Department of Radiology, Kobe University Graduate School of Medicine) ;
  • Masatoshi Hori (Department of Radiology, Kobe University Graduate School of Medicine) ;
  • Takamichi Murakami (Department of Radiology, Kobe University Graduate School of Medicine)
  • Received : 2023.05.29
  • Accepted : 2023.10.07
  • Published : 2024.01.01

Abstract

Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

Keywords

References

  1. Kauffmann R, Fong Y. Post-hepatectomy liver failure. Hepatobiliary Surg Nutr 2014;3:238-246 
  2. Mullen JT, Ribero D, Reddy SK, Donadon M, Zorzi D, Gautam S, et al. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J Am Coll Surg 2007;204:854-862; discussion 862-864 
  3. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, et al. Posthepatectomy liver failure: a definition and grading by the international study group of liver surgery (ISGLS). Surgery 2011;149:713-724 
  4. Rahnemai-Azar AA, Cloyd JM, Weber SM, Dillhoff M, Schmidt C, Winslow ER, et al. Update on liver failure following hepatic resection: strategies for prediction and avoidance of post-operative liver insufficiency. J Clin Transl Hepatol 2018;6:97-104 
  5. Mehrabi A, Golriz M, Khajeh E, Ghamarnejad O, Probst P, Fonouni H, et al. Meta-analysis of the prognostic role of perioperative platelet count in posthepatectomy liver failure and mortality. Br J Surg 2018;105:1254-1261 
  6. Kokudo T, Hasegawa K, Shirata C, Tanimoto M, Ishizawa T, Kaneko J, et al. Assessment of preoperative liver function for surgical decision making in patients with hepatocellular Carcinoma. Liver Cancer 2019;8:447-456 
  7. Lafaro K, Buettner S, Maqsood H, Wagner D, Bagante F, Spolverato G, et al. Defining post hepatectomy liver insufficiency: where do we stand? J Gastrointest Surg 2015;19:2079-2092. 
  8. Schindl MJ, Redhead DN, Fearon KC, Garden OJ, Wigmore SJ. The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut 2005;54:289-296 
  9. Asenbaum U, Kaczirek K, Ba-Ssalamah A, Ringl H, Schwarz C, Waneck F, et al. Post-hepatectomy liver failure after major hepatic surgery: not only size matters. Eur Radiol 2018;28:4748-4756 
  10. Aramaki O, Takayama T, Matsuyama Y, Kubo S, Kokudo N, Kurosaki M, et al. Reevaluation of Makuuchi's criteria for resecting hepatocellular carcinoma: a Japanese nationwide survey. Hepatol Res 2023;53:127-134 
  11. Abdalla EK, Adam R, Bilchik AJ, Jaeck D, Vauthey JN, Mahvi D. Improving resectability of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 2006;13:1271-1280 
  12. Sofue K, Arai Y, Shimada K, Takeuchi Y, Kobayashi T, Satake M, et al. Right portal vein embolization with absolute ethanol in major hepatic resection for hepatobiliary malignancy. Br J Surg 2014;101:1122-1128 
  13. Saito Y, Shimada M, Morine Y, Yamada S, Sugimoto M. Essential updates 2020/2021: current topics of simulation and navigation in hepatectomy. Ann Gastroenterol Surg 2021;6:190-196 
  14. Xie T, Li Y, Lin Z, Liu X, Zhang X, Zhang Y, et al. Deep learning for fully automated segmentation and volumetry of couinaud liver segments and future liver remnants shown with CT before major hepatectomy: a validation study of a predictive model. Quant Imaging Med Surg 2023;13:3088-3103 
  15. Takamoto T, Hashimoto T, Ogata S, Inoue K, Maruyama Y, Miyazaki A, et al. Planning of anatomical liver segmentectomy and subsegmentectomy with 3-dimensional simulation software. Am J Surg 2013;206:530-538 
  16. Saito Y, Imura S, Morine Y, Ikemoto T, Yamada S, Shimada M. A hepatectomy based on a hybrid concept of portal perfusion of anterior segment and venous drainage area of superior right hepatic vein. Am Surg 2022;88:1077-1083 
  17. Sano K, Makuuchi M, Miki K, Maema A, Sugawara Y, Imamura H, et al. Evaluation of hepatic venous congestion: proposed indication criteria for hepatic vein reconstruction. Ann Surg 2002;236:241-247 
  18. Van Beers BE, Pastor CM, Hussain HK. Primovist, Eovist: what to expect? J Hepatol 2012;57:421-429 
  19. Haimerl M, Verloh N, Zeman F, Fellner C, Nickel D, Lang SA, et al. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: comparison between signal-intensity-based indices and T1 relaxometry. Sci Rep 2017;7:43347 
  20. Theilig D, Elkilany A, Schmelzle M, Muller T, Hamm B, Denecke T, et al. Consistency of hepatocellular gadoxetic acid uptake in serial MRI examinations for evaluation of liver function. Abdom Radiol (NY) 2019;44:2759-2768 
  21. Yamada A, Hara T, Li F, Fujinaga Y, Ueda K, Kadoya M, et al. Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 2011;260:727-733 
  22. Kim DK, Choi JI, Choi MH, Park MY, Lee YJ, Rha SE, et al. Prediction of posthepatectomy liver failure: MRI with hepatocyte-specific contrast agent versus indocyanine green clearance test. AJR Am J Roentgenol 2018;211:580-587 
  23. Luo N, Huang X, Ji Y, Jin G, Qin Y, Xiang B, et al. A functional liver imaging score for preoperative prediction of liver failure after hepatocellular carcinoma resection. Eur Radiol 2022;32:5623-5632 
  24. Wang Q, Wang A, Sparrelid E, Zhang J, Zhao Y, Ma K, et al. Predictive value of gadoxetic acid-enhanced MRI for posthepatectomy liver failure: a systematic review. Eur Radiol 2022;32:1792-1803 
  25. Theilig D, Steffen I, Malinowski M, Stockmann M, Seehofer D, Pratschke J, et al. Predicting liver failure after extended right hepatectomy following right portal vein embolization with gadoxetic acid-enhanced MRI. Eur Radiol 2019;29:5861-5872 
  26. Araki K, Harimoto N, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, et al. Efficiency of regional functional liver volume assessment using Gd-EOB-DTPA-enhanced magnetic resonance imaging for hepatocellular carcinoma with portal vein tumor thrombus. Surg Today 2020;50:1496-1506 
  27. Tsujita Y, Sofue K, Komatsu S, Yamaguchi T, Ueshima E, Ueno Y, et al. Prediction of post-hepatectomy liver failure using gadoxetic acid-enhanced magnetic resonance imaging for hepatocellular carcinoma with portal vein invasion. Eur J Radiol 2020;130:109189 
  28. Ninomiya M, Shirabe K, Kayashima H, Ikegami T, Nishie A, Harimoto N, et al. Functional assessment of the liver with gadolinium-ethoxybenzyl-diethylenetriamine penta-acetate-enhanced MRI in living-donor liver transplantation. Br J Surg 2015;102:944-951 
  29. Nakaura T, Kobayashi N, Yoshida N, Shiraishi K, Uetani H, Nagayama Y, et al. Update on the use of artificial intelligence in hepatobiliary MR imaging. Magn Reson Med Sci 2023;22:147-156 
  30. Ba-Ssalamah A, Bastati N, Wibmer A, Fragner R, Hodge JC, Trauner M, et al. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: where are we? J Magn Reson Imaging 2017;45:646-659 
  31. Murakami T, Sofue K, Hori M. Diagnosis of hepatocellular carcinoma using Gd-EOB-DTPA MR imaging. Magn Reson Med Sci 2022;21:168-181 
  32. Yoon JH, Lee JM, Kang HJ, Ahn SJ, Yang H, Kim E, et al. Quantitative assessment of liver function by using gadoxetic acid-enhanced MRI: hepatocyte uptake ratio. Radiology 2019;290:125-133 
  33. Ichikawa S, Motosugi U, Wakayama T, Morisaka H, Funayama S, Tamada D, et al. An intra-individual comparison between free-breathing dynamic MR imaging of the liver using stack-of-stars acquisition and the breath-holding method using cartesian sampling or view-sharing. Magn Reson Med Sci 2023;22:221-231 
  34. Noda T, Sofue K, Shimada R, Ueda Y, Ueno Y, Somiya Y, et al. Whole upper abdominal T1 mapping on free-breathing 3D look-looker sequence using radial sampling acquisition: a phantom and volunteer study [accessed on September 12, 2023]. Available at: https://www.ismrm.org/23/program-files/D-45.htm