• Title/Summary/Keyword: Learned images

Search Result 208, Processing Time 0.027 seconds

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.

Implementation of YOLOv5-based Forest Fire Smoke Monitoring Model with Increased Recognition of Unstructured Objects by Increasing Self-learning data

  • Gun-wo, Do;Minyoung, Kim;Si-woong, Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.536-546
    • /
    • 2022
  • A society will lose a lot of something in this field when the forest fire broke out. If a forest fire can be detected in advance, damage caused by the spread of forest fires can be prevented early. So, we studied how to detect forest fires using CCTV currently installed. In this paper, we present a deep learning-based model through efficient image data construction for monitoring forest fire smoke, which is unstructured data, based on the deep learning model YOLOv5. Through this study, we conducted a study to accurately detect forest fire smoke, one of the amorphous objects of various forms, in YOLOv5. In this paper, we introduce a method of self-learning by producing insufficient data on its own to increase accuracy for unstructured object recognition. The method presented in this paper constructs a dataset with a fixed labelling position for images containing objects that can be extracted from the original image, through the original image and a model that learned from it. In addition, by training the deep learning model, the performance(mAP) was improved, and the errors occurred by detecting objects other than the learning object were reduced, compared to the model in which only the original image was learned.

Design Of Intrusion Detection System Using Background Machine Learning

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.149-156
    • /
    • 2019
  • The existing subtract image based intrusion detection system for CCTV digital images has a problem that it can not distinguish intruders from moving backgrounds that exist in the natural environment. In this paper, we tried to solve the problems of existing system by designing real - time intrusion detection system for CCTV digital image by combining subtract image based intrusion detection method and background learning artificial neural network technology. Our proposed system consists of three steps: subtract image based intrusion detection, background artificial neural network learning stage, and background artificial neural network evaluation stage. The final intrusion detection result is a combination of result of the subtract image based intrusion detection and the final intrusion detection result of the background artificial neural network. The step of subtract image based intrusion detection is a step of determining the occurrence of intrusion by obtaining a difference image between the background cumulative average image and the current frame image. In the background artificial neural network learning, the background is learned in a situation in which no intrusion occurs, and it is learned by dividing into a detection window unit set by the user. In the background artificial neural network evaluation, the learned background artificial neural network is used to produce background recognition or intrusion detection in the detection window unit. The proposed background learning intrusion detection system is able to detect intrusion more precisely than existing subtract image based intrusion detection system and adaptively execute machine learning on the background so that it can be operated as highly practical intrusion detection system.

GAN-based shadow removal using context information

  • Yoon, Hee-jin;Kim, Kang-jik;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.29-36
    • /
    • 2019
  • When dealing with outdoor images in a variety of computer vision applications, the presence of shadow degrades performance. In order to understand the information occluded by shadow, it is essential to remove the shadow. To solve this problem, in many studies, involves a two-step process of shadow detection and removal. However, the field of shadow detection based on CNN has greatly improved, but the field of shadow removal has been difficult because it needs to be restored after removing the shadow. In this paper, it is assumed that shadow is detected, and shadow-less image is generated by using original image and shadow mask. In previous methods, based on CGAN, the image created by the generator was learned from only the aspect of the image patch in the adversarial learning through the discriminator. In the contrast, we propose a novel method using a discriminator that judges both the whole image and the local patch at the same time. We not only use the residual generator to produce high quality images, but we also use joint loss, which combines reconstruction loss and GAN loss for training stability. To evaluate our approach, we used an ISTD datasets consisting of a single image. The images generated by our approach show sharp and restored detailed information compared to previous methods.

A Review of Computer Vision Methods for Purpose on Computer-Aided Diagnosis

  • Song, Hyewon;Nguyen, Anh-Duc;Gong, Myoungsik;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In the field of Radiology, the Computer Aided Diagnosis is the technology which gives valuable information for surgical purpose. For its importance, several computer vison methods are processed to obtain useful information of images acquired from the imaging devices such as X-ray, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). These methods, called pattern recognition, extract features from images and feed them to some machine learning algorithm to find out meaningful patterns. Then the learned machine is then used for exploring patterns from unseen images. The radiologist can therefore easily find the information used for surgical planning or diagnosis of a patient through the Computer Aided Diagnosis. In this paper, we present a review on three widely-used methods applied to Computer Aided Diagnosis. The first one is the image processing methods which enhance meaningful information such as edge and remove the noise. Based on the improved image quality, we explain the second method called segmentation which separates the image into a set of regions. The separated regions such as bone, tissue, organs are then delivered to machine learning algorithms to extract representative information. We expect that this paper gives readers basic knowledges of the Computer Aided Diagnosis and intuition about computer vision methods applied in this area.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

A study of interior style transformation with GAN model (GAN을 활용한 인테리어 스타일 변환 모델에 관한 연구)

  • Choi, Jun-Hyeck;Lee, Jae-Seung
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • Recently, demand for designing own space is increasing as the rapid growth of home furnishing market. However, there is a limitation that it is not easy to compare the style between before construction view and after view. This study aims to translate real image into another style with GAN model learned with interior images. To implement this, first we established style criteria and collected modern, natural, and classic style images, and experimented with ResNet, UNet, Gradient penalty concept to CycleGAN algorithm. As a result of training, model recognize common indoor image elements, such as floor, wall, and furniture, and suitable color, material was converted according to interior style. On the other hand, the form of furniture, ornaments, and detailed pattern expressions are difficult to be recognized by CycleGAN model, and the accuracy lacked. Although UNet converted images more radically than ResNet, it was more stained. The GAN algorithm allowed us to represent results within 2 seconds. Through this, it is possible to quickly and easily visualize and compare the front and after the interior space style to be constructed. Furthermore, this GAN will be available to use in the design rendering include interior.

The Turbidity Measured by Division Image Analysis in Flow Type Sample (분할화상분석에 의한 흐름 형태 시료의 탁도 측정)

  • Park, Jong-Ho;Park, Soo-Haeng;Ryu, Min-Su
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.681-684
    • /
    • 2009
  • The turbidity of flow type samples has a nonlinear relation to brightness of laser scattered light, but the shape of images in laser scattered light is different from each turbidity samples. The turbidity measurement will be easy if it uses a pattern of images in laser scattered light. But the excessive analysis load comes from the turbidity measured by red, green, blue intensity (intensity) of all pixels of images in laser scattered light. Therefore the images in laser scattered light were divided by appropriate block to decrease excessive analysis load. The shape of divided images in laser scattered light was different from each turbidity sample. The real turbidity has a linear relation to turbidity measured by the artificial neural network learned with the intensity of divided images in laser scattered light and turbidity.

Measurement of the Visibility of the Smoke Images using PCA (PCA를 이용한 연기 영상의 가시도 측정)

  • Yu, Young-Jung;Moon, Sang-ho;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1474-1480
    • /
    • 2018
  • When fires occur in high-rise buildings, it is difficult to determine whether each escape route is safe because of complex structure. Therefore, it is necessary to provide residents with escape routes quickly after determining their safety. We propose a method to measure the visibility of the escape route due to the smoke generated in the fire by analyzing the images. The visibility can be easily measured if the density of smoke detected in the input image is known. However, this approach is difficult to use because there are no suitable methods for measuring smoke density. In this paper, we use principal component analysis by extracting a background image from input images and making it training data. Background images and smoke images are extracted from images given as inputs, and then the learned principal component analysis is applied to map of as a new feature space, and the change is calculated and the visibility due to the smoke is measured.