The Turbidity Measured by Division Image Analysis in Flow Type Sample

분할화상분석에 의한 흐름 형태 시료의 탁도 측정

  • Park, Jong-Ho (School of Biological Sciences and Technology, Chonnam National University) ;
  • Park, Soo-Haeng (College of Humanities and Social Sciences, Kangwon National University) ;
  • Ryu, Min-Su (School of Biological Sciences and Technology, Chonnam National University)
  • 박종호 (전남대학교 생명과학기술학부) ;
  • 박수행 (강원대학교 인문사회과학대학) ;
  • 유민수 (전남대학교 생명과학기술학부)
  • Received : 2009.09.30
  • Accepted : 2009.10.29
  • Published : 2009.12.10

Abstract

The turbidity of flow type samples has a nonlinear relation to brightness of laser scattered light, but the shape of images in laser scattered light is different from each turbidity samples. The turbidity measurement will be easy if it uses a pattern of images in laser scattered light. But the excessive analysis load comes from the turbidity measured by red, green, blue intensity (intensity) of all pixels of images in laser scattered light. Therefore the images in laser scattered light were divided by appropriate block to decrease excessive analysis load. The shape of divided images in laser scattered light was different from each turbidity sample. The real turbidity has a linear relation to turbidity measured by the artificial neural network learned with the intensity of divided images in laser scattered light and turbidity.

흐름 형태 시료의 탁도와 레이저 산란광 밝기의 관계는 비선형적이나 탁도 시료에 따라 레이저 산란광 화상은 형태가 서로 상이하다. 레이저 산란광 화상의 패턴을 이용하면 탁도 측정이 용이할 것이다. 그러나 레이저 산란광 화상의 모든 화소의 red, green, blue intensity (intensity)로 탁도를 측정하는 것은 분석에 과도한 부하가 발생한다. 따라서 과도한 부하를 줄이기 위하여 레이저 산란광 화상 분할하였다. 분할된 레이저 산란광 화상은 탁도에 따라 형태가 서로 상이함을 알 수 있었다. 분할된 레이저 산란광 화상의 intensity와 탁도로 학습된 인공신경망으로 측정된 탁도가 실제 탁도와 선형 관계임을 알 수 있었다.

Keywords

References

  1. 환경부, 먹는물수질공정시험방법, 환경부 고시, 45 (1999)
  2. 강동효, 수질화학분석법, 20, 신광문화사, (2000)
  3. HACH, Excellence in Turbidity Measurement, HACH Corporation, (1995)
  4. International Organization for Standards (ISO), International Standard ISO7027 Water Quality Determinationor Turbidity, ISO, (1990)
  5. G.-H. Ga, H.-S. Jang, Y.-B. Kim, and J.-W. Kwak, J. of KSEE., 31, 263, (2009)
  6. C. Li and H. Jiang, Particulate Systems in Nano- and Biotechnologies, 223 (2009)
  7. R.-F. Yu, H.-W. Chen, W.-P. Cheng, and M.-L. Chu, Environmental Monitoring and Assessment, 148, 19, (2009) https://doi.org/10.1007/s10661-007-0135-z
  8. S. Choi, Y. Kim, H. Yoom, J. Cha, J. Choi, and C. Kim, J. of KSEE, 30, 168, (2008)
  9. A. L. Amaral, Y. P. Ginoris, A. Nicolau, M. A. Z. Coelho, and E. C. Ferreira, Analytical and Bioanalytical Chemistry, 391, 1321, (2008) https://doi.org/10.1007/s00216-008-1845-y
  10. G. Weng and P. Ye, Proceedings of SPIE, 7130, (2008)
  11. D. Pallares and F. Johnsson, Chemical Engineering Science, 61, 2710 (2006) https://doi.org/10.1016/j.ces.2005.11.030
  12. B. P. Shrestha, N. K. Shrestha, and L. Poudel, Proceedings of SPIE, 7343, (2009)
  13. J.-F. Witz, S. Roux, F. Hild, and J.-B. Rieunier, Journal of Engineering Materials and Technology, 2, 130, (2008)
  14. G. S. Grewal and V. N. Dubey, Measurement Science and Technology, 18, 1361 (2007) https://doi.org/10.1088/0957-0233/18/5/024
  15. Q. Marashdeh, W. Warsito, L.-S. Fan, and F. L. Teixeira, Measurement Science and Technology, 17, 2097, (2006) https://doi.org/10.1088/0957-0233/17/8/007
  16. R.-F. Yu, W.-P. Cheng, and M.-L. Chu, Journal of Environmental Engineering, 131, 71, (2005) https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(71)