• 제목/요약/키워드: Lean Mixture

검색결과 193건 처리시간 0.027초

농도 불균일 LPG-공기 혼합기체의 폭발특성 (Explosion Characteristics of Nonhomogeneous LPG-Air Mixtures)

  • 배정일;김영수;서용칠;신창섭
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 1993
  • The explosion characteristics of nonhomogeneous LPG-Air mixtures was measured in a cylindrical vessel and a pipe. The maximum explosion pressure, the maximum rate of explosion pressure rise, and the flame propagation velocity were measured and compared with that of homogeneous explosion by changing the effective factors on the explosion of nonhomogeneous mixtures such as pressure difference, effusion time and delay time. Explosion was occured even in the lower concentration than the lean flammability limit of mixture. The maximum explosion pressure was increased with increase of LPG concentration, however, the maximum explosion pressure rise was not in the nonhomogeneous explosion. An d the flame propagation velocity was decreased with nonhomogeneity, however, the maximum explosion pressure was always above 0.7kg/$\textrm{cm}^2$.

  • PDF

고압에서 DME-Air 혼합기의 화염속도 측정 (Measurement of Laminar Flame Speeds of Dimethyl Ether-Air Mixtures at High Pressure)

  • 이수각;이기용
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2014
  • Spherically expanding flames are used to measure flame speeds, which are derived the corresponding laminar flame speeds at zero stretch. Dimethyl Ether-Air mixtures at high pressure are studied over an extensive range of equivalence ratios. The classical shadowgraph technique is used to detect the reaction zone. In analytical methodology the optimization process using least mean squares is performed to extract the laminar flame speeds. It is seen that the laminar flame speed of DME-Air mixture with the increase of pressure decreases rapidly showing a similar trend to other hydrocarbon fuels. At pressure of 2 and 10 atm the experimental data from the present study agree well with results reported in the literature. Especially the laminar flame speeds at 2 atm are in good agreement with those calculated in numerical work over the full stoichiometric range. At elevated pressure of 12 atm the measured data are slightly slower at fuel lean condition and show close agreement at fuel rich condition when compared with the numerical results.

메탄올 스파크 점화기관의 기화특성에 관한 연구 (A Study of Vaporization Characteristics in the Methanol Spark Ignition Engine)

  • 한성빈;문성수;이성열
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.77-84
    • /
    • 1994
  • The oil crises in 1973 and 1978 stimulated the alternative fuel research activities in many countries around the world. Among the alternative fuels, methanol is one of the highest potential fuels for transportation. Methanol has been considered for use as automotive fuel, but it has a defect of the great latent vaporization heat. Therefore, authors have made the fuel vaporizing device in order to eliminate the fuel film flow heating the mixture. This paper presents a study on the characteristics of vaporization, engine performance, and emission which result from using the fuel vaporizing device.

HCNG 엔진의 배출가스 특성에 따른 상용화 타당성 연구 (A Study on Commercialization Feasibility of HCNG Engine in Emissions Characteristics)

  • 박철웅;김창기;최영;이장희
    • 한국가스학회지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2013
  • $NO_x$ 배출허용기준이 강화되는 배출가스 규제에 대응하기 위한 대안으로서 제시되는 천연가스-수소 혼합연료 (HCNG)는 수소의 빠른 화염속도와 넓은 가연범위를 이용하여 후처리 장치 없이 규제치를 만족할 수 있어 디젤엔진에 비해 저공해성이나 가격경쟁력 측면에서 유리한 장점이 있다. 열효율 측면에서도 우수성을 인정받는 HCNG 연료는 수소 혼합율은 물론 운전영역별 운전전략에 따라 연소특성이 달라진다. 본 연구에서는 대형 천연가스 엔진에 수소혼합율 30%의 HCNG 연료를 적용하여 운전영역별 안정적인 연소특성 및 배출가스 특성을 살펴봄으로써 상용화 가능성과 운전전략을 포함한 기술 개발방향에 대해 검토하고자 하였다.

넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구 (A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames)

  • 정병규;이기만
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

2차 혼합물 반응표면 모형에서의 강건한 실험 설계 (Robust Designs of the Second Order Response Surface Model in a Mixture)

  • 임용빈
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.267-280
    • /
    • 2007
  • 혼합물 성분들의 비율의 상한과 하한에 대한제한조건이 부과된 제한된 혼합물 실험 공간 R에서의 혼합물 실험을 위한 최적 설계를 찾는 데에 D-, G-, V- 최적기준 등과 같은 다양한 최적 설계 기준이 사용된다. 각각의 실험 설계는 선택된 최적 기준에 대해서는 최적이지만, 제한된 혼합물 실험 공간에서의 예측력에 대해서는 만족스럽지 못하다는 것은 잘 알려진 사실이다. (Vining 등, 1993; Khuri 등, 1999). 우리의 관심사는 2차 혼합물 반응표면모형을 가정한 경우에 제한된 혼합물 공간에서의 효율적인 실험 설계를 찾는 것이다. 이 논문에서는 꼭지점, 선중심점, 면중심점, 중앙점과 내부점으로 구성된 확장된 후보 실험점 그룹을 구성한 다음에, D-최적기준, G-최적기준, V-최적기준과 실험점들 간의 거리에 근거한 U-최적기준에 강건한 실험 설계를 제안한다. Khuri 등(1999)에서 분석된 비료 혼합물 실험과Vining과 Cornell(1993)이 분석한 조명탄 혼합물 실험의 사례에서 강건한 실험설계들과 두 논문에서 추천된 실험 설계들에 대한 예측치의 표준화된 분산의 분위수의 그림(SVPQP)을 비교한 결과 강건한 설계가 상대적으로 우월함이 판명되었다.

액화석유 가스 (L. P. G) 와 산소 혼합물의 폭발특성 및 점화조건에 관한 연구 (Detonation Characteristics of L. P. G /$O_2$Gas Mixture and the Self-Ignition Condition for the Formation of Detonative Wave)

  • 최성락;심규선;김은식;윤석승;김웅
    • 대한화학회지
    • /
    • 제30권4호
    • /
    • pp.394-402
    • /
    • 1986
  • 충격관을 사용하여 L.P.G./$O_2$혼합기체의 폭발반응에 대해 L.P.G. 농도 3~45 부피 % 범위에 걸쳐 조사하였다. 본실험조건하에서 폭발가능한 하한농도조건은 L.P.G.농도 3.4%, 상한농도조건은 40.0%로 측정되였다. L.P.G.농도가 증가함에 따라 폭발파속도는 증가하였으나 당량비조건(${\phi}$=1, L.P.G. 농도 17.2%)에서 변곡점을 나타내었으며 최대속도는 당량비보다 1.57배 큰 농도조건(${\phi}$=1.57)에서 2.65km/sec를 나타낸 후 다시 감소하는 경향을 나타내었다. 당량비근처에서 변곡점이 나타난 것은 L.P.G. 농도가 당량비보다 적은 조건과 당량비보다 큰 조건하에서 폭발반응메카니즘이 다른데에 기인하는 것으로 믿어진다. 또한 충격가열 방식을 사용하여 L.P.G./$O_2$ 조성비에 따른 자동점화 온도를 측정하였다. 폭발파를 형성시킬 수 있은 자동점화온도는 당량비조건에서 $742{\pm}3{\circ}K$의 최저값을 나타냈으며 당량비로 부터 벗어남에 따라 급격히 증가하는 경향을 나타냈다.

  • PDF

충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구 (A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG)

  • 황성일;정성식;염정국
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.

모델 가스터빈 연소기내의 자발 불안정성에 관한 실험적 연구 (An Experimental Study on the Self-excited Instabilities in Model Gas Turbine Combustor)

  • 이민철;홍정구;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.197-205
    • /
    • 2004
  • Most of gas turbines is operated by the type of dry premixed combustion to reduce NOx emission and economize fuel consumption. However this type operation, combustion induced instability brought failure problems cause by high pressure and heat release fluctuations. Though there has been lots of studies since Lord Rayleigh to understand this instability mechanism and control the instabilities, none of them made matters clear. In order to understand the instability phenomena, a simple experimental study with dump combustor was conducted at the moderate pressure and ambient temperature conditions. From this model gas turbine combustor self-excited instabilities at the resonance mode(200Hz) and bulk mode(10Hz) were occurred and observed at the three points of view; pressure, heat release and equivalence ratio which are acquired by peizo-electric transducer, HICCD camera and acetone LIF respectively. From this results we could see the instability mechanism clear with the account of time scale analysis which explained by the propagation of pressure wave to the upward of mixture stream and convectional transfer of the equivalence ratio fluctuation by this pressure fluctuation.

  • PDF

Evaluation of the Quality of Beef Patties Formulated with Dried Pumpkin Pulp and Seed

  • Serdaroglu, M.;Kavusan, H.S.;Ipek, G.;Ozturk, B.
    • 한국축산식품학회지
    • /
    • 제38권1호
    • /
    • pp.1-13
    • /
    • 2018
  • The objective of this study was to investigate quality attributes of beef patties formulated with dried pumpkin pulp and seed mixture (PM). Four different meatball formulations were prepared where lean was replaced with PM as C (0% PM), P2 (2% PM), P3 (3% PM) and P5 (5% PM). Utilization of PM decreased moisture and increased ash content of the patties. Incorporation of 5% PM (P5) increased the pH value of both uncooked and cooked patties compared to C group. Increasing levels of PM increased water-holding capacity. No significant differences were found in cooking yield and diameter change with the addition of PM. Incorporation of PM increased fat and decreased moisture retention of the samples. $a^*$ values were decreased with PM addition, where $L^*$ values did not differ among treatments and $b^*$ values were similar in C, P3 and P5 samples. Textural properties were mostly equivalent to control samples with the incorporation of PM even at higher concentrations. The addition of PM did not significantly affect any of the sensory scores tested. These results indicated that utilization of PM presents the opportunity to decrease the amount of meat besides to improve healthier profile without causing negative changes in physical, chemical and technological quality of beef patties.