• Title/Summary/Keyword: Lean Misfire Limit

Search Result 24, Processing Time 0.019 seconds

Experimental Study on Axial Stratification Process and Its Effects (I) - Stratification in Engine -

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1457-1469
    • /
    • 2002
  • This paper is the first of several companion papers, which investigate axial stratification process and its effects in an Sl engine. The axial stratification is very sophisticate phenomenon, which results from combination of fuel injection, port and in-cylinder flow and mixing. Because of the inherent unsteady condition in the reciprocating engine, it Is impossible to understand the mechanism through the analytical method. In this paper, the ports were characterized by swir and tumble number in steady flow bench test. After this, lean misfire limit of the engines, which had different port characteristic, were investigated as a function of swirl ratio and injection timing for confirming the existence of stratification. In addition, gas fuel was used for verifying whether this phenomenon depends on bulk air motion of cylinder or on evaporation of fuel. High-speed gas sampling and analysis was also performed to estimate stratification charging effect. The results show that the AFR at the spark plug and LML are very closely related and the AFR is the results of bulk air motion.

Visualization of Initial Flame Development in an SI Engine (스파크 점화 엔진에서 초기화염 발달의 가시화)

  • Ohm Inyong
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

A study on the engine performance in a multiple spark ignition engine (다회수 스파크 점화기관의 기관성능에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

The Development of Lean-Burn Eng. (린-번 엔진 개발)

  • Lee, Tae-Pyo;Yim, Kook-Hyun;Kim, Jong-Boo;Kim, Min-Hyung;Ah, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.1005-1008
    • /
    • 1999
  • HMC has developed the lean burn system with alpha 4-valve into domestic market in the end of 1997. In a viewpoint of saving energy and prevention of global warming (CO2 reduction), the lean burn system has recently attracted a considerable attentions in gasoline engines. There has been, however, difficulty in extending LML(Lean Misfire Limit) enough to meet the emission regulations and satisfaction of driveability. In this paper some descriptions will be given upon the new technology of lean bum engine which will be installed in Accent, especially the improvement of the combustion, the development of engine management system such as intake system and wide range air fuel control strategy, and the result of vehicle test.

  • PDF

Effects of Port Masking on fart Load Performance: Part II - Emission and Fuel Economy (포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part II - 배기 및 연비특성)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.23-29
    • /
    • 2001
  • This paper is the second of companion papers, which investigate port-masking effects on emission and fuel economy. Port-masking was applied to commercial SOHC 3-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. In this paper, main interest is focused on the influence of injection timing on emission and fuel economy. Various injection timing was applied to the six cases, under the stoichiometric and lean-limit air-fuel ratio. Under the stoichiometric condition, an explanation about the reason of the change in emission level due to injection timing change is given. It is observed that NOx emission under the LML condition varies significantly when the injection timing changes.

  • PDF

A study on the effect of discharge in a multiple spark ignition engine (다회수 스파크 점화기관의 방전효과에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.55-64
    • /
    • 1989
  • The effect of discharge have been investigated for condition of spark in a multiple spark ignition engine, as the spark duration, capacitive and inductive discharge energy were calculated for condition of spark by ignition wave and energy formula. The useful portion of spark discharge is divided into capacitance portion and inductance portion. It was found that capacitive discharge energy and spark duration were increased according to increasing number of spark, and inductive discharge energy was increased according to increasing spark interval. Therefore engine torque was increase and lean misfire limit was extended comparing with the standard ignition system. It found that spark energy was discharged within ignition delay period availability acted on the formation and growth of flame kernel, and total spark energy was increased according to increasing number of spark times, but discharged spark energy after ignition delay became unavailable energy. And the capacitive discharge energy has the dominant effect for stoichiomeric or not very rich air-fuel mixture but inductive discharge energy has the dominant effect for lean air-fuel mixture.

  • PDF

A Study on Relationship between Ignition Systems and the Performances of Gasoline Engines (I) (점화시스템의 종류와 가솔린 엔진 성능과의 상관관계에 대한 연구 (I))

  • SunWoo, Myoung-Ho;Song, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.966-969
    • /
    • 1998
  • Fast burning achieves higher efficiency, and reduces cycle variations which is able to improve vehicle driveability. Furthermore, the greater resistance to knock with fast burning can allow the fuel economy advantages associated with higher compression ratio to be realized. One way of increasing the combustion speed is to enhance the performance of ignition systems which were able to reduce the early period of combustion. It is well known that shortening the initial stage of combustion also reduces the cyclic variations. This literature survey deals with the papers which have studied the ignition process or various ignition systems. Those systems increasing the combustion speed, extending the lean misfire limit, reducing the exhaust gas and stabilizing the operating condition of the spark ignition engine by modifying the ignition process or increasing ignition energy.

  • PDF