• Title/Summary/Keyword: Leakage tightness

검색결과 33건 처리시간 0.025초

신축 공동주택의 누기특성 및 기밀성능 분석에 관한 연구 (The Air Leakage Characteristics and Airtightness Performance of a Newly Built Apartment)

  • 이윤규;신철웅
    • 설비공학논문집
    • /
    • 제25권11호
    • /
    • pp.606-611
    • /
    • 2013
  • In responding to the recent framework convention on climate change, and the rise of the need for energy efficient buildings, such as Zero Energy Buildings (ZEB), domestic insulation standards and energy conservation regulations are being reinforced, to prevent heat loss. Accordingly, the Ministry of Land, Infrastructure and Transport have made amendments in Chapter 21 "Enforcement regulations for building facilities standards etc.", and Chapter 22 "Energy conservation standard", to reflect these changes. To effectively implement these regulations, it is required to propose air-tightness test methods, and establish air-tightness standards, based on the air leakage characteristics of domestic apartment housings. This research has been done primarily to collect basic technical data, to provide guidance for the establishment of domestic air-tightness standards for new apartment housing, through studying air-tightness test methods, field measurement on air-tightness of new apartment housings, and air leakage characteristics of major developed countries.

액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구 (A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature)

  • 이종구;이종민;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발 (Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea)

  • 배민정;최경석
    • 토지주택연구
    • /
    • 제11권3호
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석 (Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES))

  • 김형목;;류동우;선우춘;송원경
    • 터널과지하공간
    • /
    • 제21권4호
    • /
    • pp.287-296
    • /
    • 2011
  • 본 연구에서는 압축공기에너지 지하저장을 위한 복공식 암반공동의 기밀성능을 평가할 목적으로 다상유체 열유동 해석을 수행하였다. 기밀성능은 저장공동으로부터 누출되는 공기질량으로 평가하였으며, 저장공동 내부에 콘크리트 라이닝 기밀시스템을 설치하고 저장공동은 비교적 천심도인 지하 100m 심도에 위치하는 것으로 가정하였다. 저장공동 내 질량수지분석 결과, 콘크리트 라이닝 및 주변 암반의 투과계수가 누기량 및 저장공동의 장기적 기밀성능에 미치는 영향이 큰 것으로 파악되었으며 콘크리트 라이닝의 투과계수가 $1.0{\times}10^{-18}\;m^2$이하 일 경우, 저장공동 운영압력이 5 MPa에서 8 MPa 사이일 때 누기량은 1%이하 인 것으로 계산되었다. 또한, 콘크리트 라이닝의 초기포화도에 따른 공기누출량 계산결과, 라이닝 수분포화도를 증가시킬수록 누기량은 감소하고 저장공동 기밀성능이 향상됨을 확인하였다.

LNG 탱크의 극저온 온도응력을 고려한 수밀성 설계방법 비교 연구 (A Study on the Liquid Tightness Design on LNG Tank Incorporating Cryogenic Temperature-induced Stresses)

  • 전세진;김영진;정철헌;진병무;김성운
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.128-131
    • /
    • 2003
  • In a design of LNG storage tank, one of the major loading conditions that significantly affects liquid tightness of the outer concrete wall is the cryogenic temperature of LNG under the emergency condition of LNG leakage. Proposed in this study are the more consistent procedures to ensure the liquid tightness of LNG tank focusing on the design of prestressing tendon. It is expected that the proposed schemes lead to a more effective serviceability design of LNG tank that satisfies various requirements for the liquid tightness in an efficient manner.

  • PDF

신축공동주택의 기밀성능 실측에 관한 연구 (The Field Measurement of Airtightness in the Apartment Buildings)

  • 박원석;윤재옥
    • KIEAE Journal
    • /
    • 제3권3호
    • /
    • pp.43-50
    • /
    • 2003
  • Nowdays the apartment is a main type of modernized residential buildings. According to the improvement of construction techniques and functions of windows and doors, recent apartments are enhanced air tightness of windows, doors and building envelopes. As Infiltration is decreased and natural ventilation is reduced, energy could be saved in winter. However, indoor air quality is bad. The air Infiltration of a building could be enlarged by physical actions, such as building designs, constructions and reduction of air tightness which is caused by aging. This research analyzes and measures with KNS-4000P (Sapporo air tightness measurement) the air tightness of the high rise apartments which is recently constructed and not occupied yet. With depressurization method, the KNS-4000 installed on the window and the indoor air-leakage was measured. At that time, Air come out from the edge of the windows and doors because of the pressure differences between indoor and outdoor. We measure the amount of the air as effective air leakage areas. This method of depressurization takes less time to measure than other methods and is less affected from other conditions. We measured infiltration of total 56 household, 29 households S apartment (total floor area : $64.42m^2$) in Balan and 29 households D apartment(total floor area : $78.21m^2$) in Chonan. As a result of the field measurements at October 2003, normalized leakage area of D apartment in Cheonan was $2.05cm^2/m^2{\sim}3.49cm^2/m^2$ (average: $2.77cm^2/m^2$) and normalized leakage area of S apartment in Balan is $1.23cm^2/m^2{\sim}1.68cm^2/m^2$ (average: $1.5cm^2/m^2$).

고기밀 고단열 주택의 기밀성능에 관한 실험적 연구 (Experimental Study on Airtightness Performance of the House with High Levels of Insulation and Airtight Construction)

  • 신우철;윤종호;백남춘
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.61-67
    • /
    • 2005
  • The purpose of this study is to evaluate the air tightness of Zero Energy Solar House(ZeSH) and to propose the construction improvement of junctions and penetrations where air infiltration was identified. Air leakage rate were measured by means of blower door test in accordance with ASTM E779-87. The results showed that ZeSH has an excellent airtightness with ACH50/20 (air change per hour at a pressure difference of 50 Pa between inside outside) of 0.34hr-1 and leakage class E by normalized leakage area of ASHRAE.

지하유류비축공동(地下油類備蓄空洞)의 수밀성(水密性)에 관한 연구(硏究) (Water Tightness around Under-ground Oil Storage Cavern)

  • 정형식;선용;김운영
    • 대한토목학회논문집
    • /
    • 제2권4호
    • /
    • pp.33-38
    • /
    • 1982
  • 지하류비축동굴의 성패는 지하수에 의하여 공동(空洞) 주위에 유지되는 수밀성(水密性)에 있다. 수밀성(水密性)이 보장되면 동굴에 저장된 유류의 gas가 유출되지 않으며 인접공동(空洞)이 비어 있을 시 이곳으로 이동하지 않는다. 본 연구에서는 전기상사모형실험(電氣相似模型實驗)을 통하여 동굴형태가 gas누출에 미치는 영향과 여러 가지 형태에서 유류이동을 방지하는 지하수위, 동굴내의 유류수준, 동굴간격 등이 검토되었다. 연구결과 동굴의 천정이 큰 곡율을 갖고 있으면 gas누출이 방지될 수 있음이 입증되었고 유류이동을 방지하는데 필요한 자연지하수위, 공동내의 유류수준 및 공동간격이 도표로 주어졌다.

  • PDF

폭발접합된 원자력 증기발생기 튜브/튜브시트 계면 특성에 관한 연구 (A Study on the Characteristics of the interface in Tube / Tubesheet of the Nuclear Steam Generator by Explosive Bonding)

  • 이병일;공창식;심상한;강정윤;이상래
    • 화약ㆍ발파
    • /
    • 제17권4호
    • /
    • pp.32-50
    • /
    • 1999
  • This study deals with interface charactristics of tube and tubesheet of the nuclear steam generator by the explosive expansion in order to take advantage of optimum expansion ratio, pull-out strength and leakage tightness and improvement of the resisitance on the stress corrosion cracking for low residual stress. The paper also show the relationship between roll, hydraulic and explosive expansion. The results obtain are as follows (1) Because of the explosive bonding is to use the high speed pressure and energy by the explosive, workability is good, bonding region is homogenous (2) Expansion ratio is 2.7%, Pull-out strength 850kg, Leakage strength $500kg/cm^2$. Clearance gap is 10~30mm in case of explosive expansion and interface structure of the tube and tubesheet is optimum condition. (3) As the transition region of the explosive expansion is inactive, the resistance of the stress corrosion cracking is increases 30~40% compare to the roll and hydraulic expansion.

  • PDF

Comparison of Continuous Appositional Suture Patterns for Cystotomy Closure in Ex Vivo Swine Model

  • Sang-hun Park;Joo-Myoung Lee;Hyunjung Park;Jongtae Cheong
    • 한국임상수의학회지
    • /
    • 제39권6호
    • /
    • pp.353-359
    • /
    • 2022
  • Several suture patterns can be used for cystotomy closure, and a continuous suture pattern is the most commonly used. In this study, the fluid-tight ability and other suitabilities of continuous appositional sutures, such as the simple continuous suture pattern (SC), running suture pattern (RN), and Ford interlocking suture pattern (FI), were compared for cystotomy closure. Cystotomy closure was performed using each suture method in 10 cases of ex vivo swine bladders in each group. Suture time, leakage site, suture length, bursting pressure (BP), bursting volume (BV), and circular bursting wall tension (CBWT) were measured. Suture time and suture length were the shortest in RN and the longest in FI. Leakage occurred in two places: the incision line directly and the hole made by the suture. Leakage occurred through the incision line in 4 bladders of the RN group and 2 bladders of the FI group, but not in the SC group, and in the rest of the bladders, leakage occurred through the suture hole. The values of BP, BV, and CBWT increased in the order of FI, SC, and RN. Suture time and suture length can be considered as factors related to healing and side effects. In this study, leakage through the incision was found in a less appositional area; therefore, leakage through the hole could be considered an indicator of better apposition. Good apposition is one of the conditions required for ideal cystotomy closure. The bursting strength representing the fluid-tight ability can be expressed as the CBWT. RN is expected to be efficient and cause a small degree of foreign body reaction; however, it is expected to be less stable. FI has the greatest fluid-tightness ability, but it has been proposed that side effects due to foreign body reactions most frequently occur in FI. In conclusion, SC, which is expected to have a sufficient degree of fluid-tightness and appropriate recovery, is preferable to other continuous appositional suturing methods for cystotomy closure.