• Title/Summary/Keyword: Leakage effect

Search Result 1,285, Processing Time 0.031 seconds

Antibacterial Mechanism and Salad Washing Effect of Bitter Orange Extract Against Salmonella Typhimurium (광귤 추출물의 Salmonella Typhimurium에 대한 항균 메커니즘 및 샐러드 세척 효과)

  • Yoon-Mi Ji;Ji-Yun Bae;Chung-Hwan Kim;Se-Wook OH
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.273-280
    • /
    • 2024
  • In this study, the antibacterial activity and mechanisms of bitter orange extract, a natural antibacterial agent, were investigated, with a focus on its potential application in washing water for controlling Salmonella Typhimurium contamination of salad, a ready-to-eat food. The minimum inhibitory concentration (MIC) of bitter orange extract against S. Typhimurium was determined using the broth dilution method. Subsequently, S. Typhimurium was exposed to various concentrations of bitter orange extract (1/16 MIC-2 MIC) and growth curves were measured. Following treatment with bitter orange extract, we investigated its antibacterial mechanism by measuring intracellular reactive oxygen species (ROS) levels, alterations in membrane potential and integrity, and nucleic acid leakage in S. Typhimurium. Additionally, salads artificially contaminated with S. Typhimurium were treated with different concentrations of bitter orange extract using the dipping method for various durations to assess the reduction effect. The MIC of bitter orange extract against S. Typhimurium was 195.313 mg/L, and bacterial growth was completely inhibited at a concentration of 1 MIC. Furthermore, an increase in bitter orange extract concentration correlated with elevated intracellular ROS levels, membrane potential disruption, membrane damage, and nucleic acid release. Importantly, salads treated with bitter orange extract exhibited a significant reduction in S. Typhimurium counts compared to the control, and prolonged treatment times resulted in further reductions in bacterial counts. Bitter orange extract was more effective than sodium hypochlorite and can be used as a safer salad wash. These findings indicate the potential treatment of salads to prevent foodborne illnesses.

Effect of mixtures of gibberellic acid and several herbicides on the herbicidal activity against wild oat (Avena fatua L.) (Gibberellic acid와 여러 가지 제초제와의 혼합처리가 메귀리에 대한 제초활성에 미치는 영향)

  • Kim, Jin-Seog;Choi, Jung-Sup;Hong, Kyung-Sik;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.107-116
    • /
    • 1998
  • Based on the differential growth response to exogenous gibberellic acid ($GA_{3}$) between semi-dwarf wheat(Triticum aestivum) and wild oat(Avena fatua), we examined the possibility of improving the selective performance of several herbicides by $GA_{3}$ application and the physiological background of $GA_{3}$-induced increase in herbicidal activity. Growth of wild oat was 4 to 5 times higher than that of wheat by $GA_{3}$ treatment. Pretreatment of wild oat seed with 300 ppm $GA_{3}$ increased the herbicidal activities of trifluralin and isoproturon by soil-surface application, but not of alachor and metsulfuron-methyl. $GA_{3}$ applied simultaneously with post-emergence herbicides resulted in a significant or moderate improvement of the efficacy of such herbicides as tralkoxydim, fenoxaprop-ethyl, metsulfuron-methyl, metribuzine and isoproturon, but not in the mixtures of oxyfluorfen or paraquat with $GA_{3}$. In the sequencial treatment of tralkoxydim and $GA_{3}$ at interval of one-day, $GA_{3}$ applied prior to tralkoxydim significantly increased a chlorosis and desiccation of leaf without affecting the growth inhibition by tralkoxydim. Tralkoxydim followed by $GA_{3}$ application had lower herbicidal activity than that of $GA_{3}$ followed by tralkoxydim treatment. Electrolyte leakage response of $GA_{3}$-pretreated or $GA_{3}$-untreated wild oat leaf against several compounds inducing membrane. peroxidation was compared. Differencial responses were observed in oxyfluorfen and isoproturon treatments with an increased electrolyte leakage in $GA_{3}$-pretreated tissue, but not in paraquat and rose bengal treatments. These results suggest that $GA_{3}$-induced increase in herbicidal activity is likely to be dependent on a herbicide type and may be due to activation of a metabolic ability related with herbicidal reponse as well as an increase in the herbicide absorbtion and translocation, rather than due to membrane and cell wall extention induced by $GA_{3}$, which in turn makes the herbicides easily enter.

  • PDF

Effect of Several Treatments on Chilling Injury of Paprika Fruits during Low Temperature Storage (몇 가지 처리가 파프리카 과실의 저온장해에 미치는 영향)

  • Choi, In-Lee;Lee, Yong Beom;Kim, Il Seop;Baek, Jun Pill;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.427-431
    • /
    • 2013
  • Paprika fruits should be stored and distributed at above $7^{\circ}C$ to prevent chilling injury but the small amount of paprika that transports with other horticultural products in refrigerated container by ship usually stored less than $5^{\circ}C$ for other products. In this case, paprika fruits cannot help exposing chilling temperature, so that the paprika must be lost marketable value during a long period of transfer. This study was conducted to compare the alleviated effects of high $CO_2$ treatment (passive MAP), heat (hot water dipping), and UVc treatment on chilling injury of paprika fruits due to low temperature storage, and also to decide if these treatments can be used for transporting under $5^{\circ}C$. After each treatment the paprika were put in the low temperature storage ($4^{\circ}C$) for 20 days and afterwards change the in room temperature ($20^{\circ}C$) for 5 days. The fresh weight loss of all the treatments except the high $CO_2$ treatment showed around 7~12% after 25 days of storage and the ethylene concentration showed periodical increases and decreases as around 3 ${\mu}l/l$. The $CO_2$ concentration was rapidly increased 33% carbon dioxide in high $CO_2$ treatment during room temperature storage after cold storage for 20 days. The firmness which is key quality characteristics during storage and is decreasing caused by chilling injury was not significantly different among all treatments. However, the firmness of stored paprika was maintained highest in the treated with hot water dipping. Therefore, HWD and UVc treatment that showed 60% of electrolyte leakage in the $4^{\circ}C$ control (chilling injury control) and similar level with the $7^{\circ}C$ control (non-chilling injury control) would be effective to alleviate chilling injury in the stored paprika.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Characteristics of the ( Pb, La ) $TiO_3$ Thin Films with Pb/La Compositions (Pb/La 조성에 따른 ( Pb, La ) $TiO_3$ 박막의 특성 변화)

  • Kang, Seong-Jun;Joung, Yang-Hee;Yoon, Yung-Sup
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.29-37
    • /
    • 1999
  • In this study, we have prepared PLT thin films having various La concentrations by using sol-gel method and studied on the effect of La concentration on the electrical properties of PLT thin films. As the La concentration increases from 5mol% to 28mol%, the dielectric constant at 10kHz increases from 428 to 761, while the loss tangent decreases from 0.063 to 0.024. Also, the leakage current density at 150kV/cm has a tendency to decrease from 6.96${\mu}A/cm^2$ to 0.79${\mu}A/cm^2$. In the result of hysteresis loops of PLT thin films, the remanent polariation and the coercive field decrease from 9.55${\mu}C/cm^2$ to 1.10${\mu}C/cm^2$ and from 46.4kV/cm to 13.7kV/cm, respectively. With the result of the fatigue test on the PLT thin films, we have found that the fatigue properties are improved remarkably as the La concentration increases from 5 mol% to 28mol%. In particular, the PLT28) has paraelectric phase and its charge storage clensity and leakage current density at 5V are 134fC/${\mu}cm^2$ and 1.01${\mu}A/cm^2$, respectively. The remanent polarization and coercive field of the PLT(10) film are 6.96${\mu}C/cm^2$ and 40.2kV/cm, respectively. After applying of $10^9$ square pulses with ${\pm}5V$, the remanent polarilzation of the PLT(10) film decreases about 20% from the initial state. In the results, we conclude that the 10mol% and the 28mol% La doped PLT thin films are very suitable for the capacitor dielectrics of new generation of DRAM and NVFRAM respecitively.

  • PDF

Heat Shock Treatments Induce the Accumulation of Phytochemicals in Kale Sprouts (열처리에 의한 케일 새싹의 기능성물질 축적)

  • Lee, Min-Jeong;Lim, Sooyeon;Kim, Jongkee;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.509-518
    • /
    • 2012
  • The objective of this study was to determine the effect of heat shock treatments on the phytochemicals including antioxidants and anticancer materials in kale (Brassica oleracea L. var. acephala) sprouts. In study I, kale sprouts grown under the growing system for four days were soaked at 40, 50, or $60^{\circ}C$ distilled water for 10, 30, or 60 seconds, and in study II, kale sprouts were soaked at $50^{\circ}C$ distilled water for 10, 20, 30, 45, or 60 seconds. After the heat shock treatments, the sprouts were transferred into normal growing conditions and recovered there for two days. Fresh and dry weights, electrolyte leakage, total phenolic concentration, antioxidant capacity, total flavonoid concentration, phenylalanine ammonia-lyase (PAL) activity, and glucosinolates content of the sprouts were measured before and after the heat shock treatments. As a result, there was a significant decrease in the fresh and dry weight of kale sprouts treated with heat shock compared with control at harvest in study I. Especially, heat shock at $60^{\circ}C$ lead to more pronounced growth inhibition compared with heat treatments at 40 and $50^{\circ}C$. Electrolyte leakage by cell collapse was the highest in the sprouts exposed to $60^{\circ}C$ distilled water, which agreed with the growth results. Heat shock at $50^{\circ}C$ significantly induced the accumulation of phenolic compounds. In study II, fresh weight of kale sprouts at $50^{\circ}C$ heat shock showed a significant decrease compared with the control at one and two days after the treatment. However, the decrease was minimal and dry weight of kale sprouts was not significantly different from that in control. In contrast, the heat shock-treated kale sprouts had higher level of total phenolic concentration than control at harvest. Heat shock treatments at $50^{\circ}C$ for 20 seconds or more showed at least 1.5 and 1.2 times higher total phenolic concentration and antioxidants capacity than control, respectively. The change of the total flavonoid concentration was similar with that of antioxidants. PAL activity after 24 hours of heat shock was higher in all the heat shock-treated sprouts than that in control suggesting heat shock may stimulate secondary metabolic pathway in kale sprouts. Seven glucosinolates were identified in kale sprouts and soaking the sprouts with $50^{\circ}C$ water for 20 seconds had a pronounced impact on the accumulation of total glucosinolates as well as two major glucosinolates, progoitrin and sinigrin, at harvest. In conclusion, this study suggests that heat shock using hot water would be a potential strategy to improve nutritional quality of kale sprouts by inducing the accumulation of phytochemicals with antioxidant and anticancer properties.

Evaluation of usability of the shielding effect for thyroid shield for peripheral dose during whole brain radiation therapy (전뇌 방사선 치료 시 갑상선 차폐체의 주변선량 차폐효과에 대한 유용성 평가)

  • Yang, Myung Sic;Cha, Seok Yong;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.265-272
    • /
    • 2014
  • Purpose : To reduce the radiation dose to the thyroid that is affected to scattered radiation, the shield was used. And we evaluated the shielding effect for the thyroid during whole brain radiation therapy. Materials and Methods : To measure the dose of the thyroid, 300cGy were delivered to the phantom using a linear accelerator(Clinac iX VARIAN, USA.)in the way of the 6MV X-ray in bilateral. To measure the entrance surface dose of the thyroid, five glass dosimeters were placed in the 10th slice's surface of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. In the same location, to measure the depth dose of the thyroid, five glass dosimeters were placed in the 10th slice by 2.5 cm depth of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. Results : Entrance surface dose of the thyroid were respectively 44.89 mGy at the unshield, 36.03 mGy at the bismuth shield, 31.03 mGy at the 0.5 mmPb shield and 23.21 mGy at a self-made 1.0 mmPb shield. In addition, the depth dose of the thyroid were respectively 36.10 mGy at the unshield, 34.52 mGy at the bismuth shield, 32.28 mGy at the 0.5 mmPb shield and 25.50 mGy at a self-made 1.0 mmPb shield. Conclusion : The thyroid was affected by the secondary scattering dose and leakage dose outside of the radiation field during whole brain radiation therapy. When using a shield in the thyroid, the depth dose of thyroid showed 11~30% reduction effect and the surface dose of thyroid showed 20~48% reduction effect. Therefore, by using the thyroid shield, it is considered to effectively protect the thyroid and can perform the treatment.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Fabrication of Polycrystalline Si Films by Silicide-Enhanced Rapid Thermal Annealing and Their Application to Thin Film Transistors (Silicide-Enhanced Rapid Thermal Annealing을 이용한 다결정 Si 박막의 제조 및 다결정 Si 박막 트랜지스터에의 응용)

  • Kim, Jone Soo;Moon, Sun Hong;Yang, Yong Ho;Kang, Sung Mo;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.443-450
    • /
    • 2014
  • Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide which can enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was then prepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a $NiCl_2$ environment. After removing surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemical vapor deposition at $200^{\circ}C$. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing (RTA) process at $730^{\circ}C$ for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as the crystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer was epitaxially crystallized with the help of $NiSi_2$ precipitates that originated from the poly-Si seed layer. The crystallinity of the SERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process. The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to $1{\times}10^{18}cm^{-3}$. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by the SERTA process were $85cm^2/V{\cdot}s$ and 1.23 V/decade at $V_{ds}=-3V$, respectively. The off current was little increased under reverse bias from $1.0{\times}10^{-11}$ A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakage current can be fabricated with more precise experiments.

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF