• 제목/요약/키워드: Leakage current density

검색결과 482건 처리시간 0.026초

Preparation of $Ba_{1-x}Sr_xTiO_3$ thin films by metal-organic chemical vapor deposition and electrical properties (Preparation of $Ba_{1-x}Sr_xTiO_3$thin films by metal by metal-organic chemical vapor deposition and electrical properties.)

  • Yoon, Jong-Guk;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Ho-Gi
    • 한국진공학회지
    • /
    • 제5권1호
    • /
    • pp.62-66
    • /
    • 1996
  • $(Ba_{1-x}Sr_xTiO_3$ (BST) thin films have been grown on Pt-coated MgO by metal -organic chemical vapor deposition. X-ray diffraction results showed that BST films were grown on a Pt/MgO substrate with (100) preferred orientation perpendicular to the surface. The lineawr relationship of P-E curve obtained form hysteresis loop measurement indicated that the BST films had a Curie transitions below room temperature . Films deposited at $900^{\circ}C$ exhibited a smooth and dense microstructure, a dielectric constant of 202, and a dissipation facotr of 0.02 at 100kHz. The leakage current density of the BST films is about $2\times10^{-10} \;A/\textrm{cm}^2$$ at an applied electric field of 0.2 MV/cm. The electrical behavior on the current-voltage characteristics is well explained by the bulk-limited Pool-Frenkel emission.

  • PDF

Li:Al cathode layer and its influence on interfacial energy level and efficiency in polymer-based photovoltaics

  • 박순미;전지혜;박오옥;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2010
  • Recent development of organic solar cell approaches the level of 8% power conversion efficiency by the introduction of new materials, improved material engineering, and more sophisticated device structures. As for interface engineering, various interlayer materials such as LiF, CaO, NaF, and KF have been utilized between Al electrode and active layer. Those materials lower the work function of cathode and interface barrier, protect the active layer, enhance charge collection efficiency, and induce active layer doping. However, the addition of another step of thin layer deposition could be a little complicated. Thus, on a typical solar cell structure of Al/P3HT:PCBM/PEDOT:PSS/ITO glass, we used Li:Al alloy electrode instead of Al to render a simple process. J-V measurement under dark and light illumination on the polymer solar cell using Li:Al cathode shows the improvement in electric properties such as decrease in leakage current and series resistance, and increase in circuit current density. This effective charge collection and electron transport correspond to lowered energy barrier for electron transport at the interface, which is measured by ultraviolet photoelectron spectroscopy. Indeed, through the measurement of secondary ion mass spectroscopy, the Li atoms turn out to be located mainly at the interface between polymer and Al metal. In addition, the chemical reaction between polymer and metal electrodes are measured by X-ray photoelectron spectroscopy.

  • PDF

상부산화 조건에 따른 N/O($SiO_2$/$Si_3$$N_4$) 구조막의 신뢰성 평가 (Reliability of N/O($SiO_2$/$Si_3$$N_4$) Films According to Top Oxidation Condition)

  • 구경완;홍봉식
    • 전자공학회논문지A
    • /
    • 제29A권9호
    • /
    • pp.20-28
    • /
    • 1992
  • Dielectric thin film of N/O ($Si_{3]N_{4}/SiO_{2}$) for high density stacked dynamic-RAM cell was formed by LPCVD and oxidation(dry & pyrogenic oxidation methods) of the top 7nm $Si_{3]N_{4}$ film. The thickness, structure and composition of this film were measured by ellipsometer, high resolution TEM, AES and SIMS. The insulating characteristics(I-V characteristics) were investigated by HP 4145, and the characteristics of TDDB (Time Dependent Dielectric Breakdown) were evaluated by using CCST(Current Constant Stress Time) method. In this experiment, The optimum oxidation condition for preparation of good insulating and TDDB characteristics of N/O film was pyrogenic oxidation at 85$0^{\circ}C$ for 30 minutes. The leakage current was reduced from 400pA to 7.5pA when SiO$_{2}$ film with thickness of 2nm was formed on the top of $Si_{3]N_{4}$ film by the pyrogenic oxidation method.

  • PDF

$Nb_2O_5$ 첨가에 따른 바리스터의 전기적 특성 (Electrical Properties of ZnO Varistors with variation of $Nb_2O_5$)

  • 조현무;이성갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.67-69
    • /
    • 2004
  • ZnO varistor ceramics which were fabricated with variation of added of 0.01, 0.02, 0.03, 0.05, 0.1mol% $Nb_2O_5$ sintered at $1150^{\circ}C$. In the specimen added 0.05mol% $Nb_2O_5$, sintered density was $5.87g/cm^3$ and electrical properties were superior to any other components. The nonlinear coefficient was 75, and clamping voltage ratio was 1.40. And, endurance surge current in the specimen added 0.05mol% $Nb_2O_5$ was $6500A/cm^2$, and deviation of varistor voltage was -1.7%. As P.C.T and T.C.T environment test were succeed in all specimens, and deviation of varistor voltage in the specimen added 0.3mol% $Nb_2O_5$ was -0.81%. All specimens showed a good leakage current property in the High Temperature Continuous Load Test for 1000hr, at $85^{\circ}C$, and variation rate of the varistor voltage was -1.71%.

  • PDF

ZnO Varistor의 신뢰성 향상 (Improvement of Reliance on Zinc oxide)

  • 조현무;이성갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.110-113
    • /
    • 2004
  • ZnO varistor ceramics which were fabricated with variation of added of $0.5{\sim}1.0mol%\;Co_3O_4$ sintered at $1150^{\circ}C$. In the specimen added $0.7mol%\;Co_3O_4$, sintered density was $6.03g/cm^3$ and electrical peoperties were superior to any other components. The nonlinear coefficient a was 83, and clamping voltage ratio was 1.35. But, endurence surge current in the specimen added $0.5mol%\;Co_3O_4$ was $7000A/cm^2$, and deviation of varistor voltage was ${\Delta}-3.23%$. As P.C.T and T.C.T environment test were succeed in all specimens, and deviation of varistor voltage in the specimen added $0.6mol%\;Co_3O_4$ was ${\Delta}-0.81%$. All specimens showed a good leakage current property in the High Temperature Continuous Load Test for 1000hr, at $85^{\circ}C$, and variation rate of the varistor voltage was ${\Delta}-2%$.

  • PDF

Thickness Effects on Electrical Properties of PVDF-TrFE (51/49) Copolymer for Ferroelectric Thin Film Transistor

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.130-131
    • /
    • 2007
  • In this study, polyvinylidene fluoride/trifluoroethylene (PVDF-TrFE) was investigated. For a metal-ferroelectic-metal (MFM) structure, We obtained that the 70 nm-thick film showed the maximum polarization of $8.24\;{\mu}C/cm^2$, 2Pr of $6\;{\mu}C/cm^2$ and the coercive voltage of ${\pm}3.1\;V$ at 12 V. The 140 nm-thick film showed higher performance. However, the thicker film required a higher voltage. The current density was $10^{-6}{\sim}10^{-7}\;A/cm^2$ under 15 V. We can expect from these results that the electrical properties of the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer, be able to be on the trade-off relationship between the remanent polarization and the leakage current.

  • PDF

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석 (Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction)

  • 유빈;임기성;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

MFS 구조로 적층된 Yttrium Manganates의 기판 변화에 따른 특성 연구 (Properties of Yttrium Manganates with MFS Structure Fabricated on Various Substates)

  • 강승구
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.206-211
    • /
    • 2003
  • Sol-gel 공정으로 제조된 YMnO$_3$박막의 결정상과 강유전특성에 미치는 기판종류와 버퍼층의 영향에 대하여 고찰하였다. Si(1OO) 기판위에는 hexagonal YMnO$_3$이 형성되었으나 Pt(111)/TiO$_2$/SiO$_2$/Si 기판위에는 hexagonal과 orthorhombic YMnO$_3$이 함께 형성되었다. 기판위에 미리 $Y_2$O$_3$버퍼층을 형성시킨 경우에는 Si(100)와 Pt(111)/TiO$_2$/SiO$_2$/Si 두가지 기판 모두 단일 hexagonal YMnO$_3$이 성장하였으며, 특히 c-축 배향성이 향상되었다. 박막내에 hexagonal과 orthorhombic YMnO$_3$이 혼재된 시편보다는 hexagonal 단일상이 형성된 시편이, 또한 단일상 시편중에서도 c-축 우선배향성이 좋은 시편이 그렇지 않은 시편에 비해 누설전류밀도 특성이 우수하였다. YMnO$_3$박막의 잔류분극값은 Si(100)기판을 사용했을 경우, 버퍼층 없이 제조된 시편은 0.14, 버퍼층이 삽입된 시편은 0.24$\mu$C/$ extrm{cm}^2$의 값을 나타내었다 한편 Pt(111)/TiO$_2$/SiO$_2$/Si 기판의 경우, 버퍼층 없이 형성된 YMnO$_3$시편은 이력곡선을 보여주지 못하였고, 버퍼층이 삽입된 시편은 1.14$\mu$C/$\textrm{cm}^2$의 잔류분극값을 나타내었다. 이상의 연구를 통하여 기판의 종류와 $Y_2$O$_3$버퍼층 삽입으로 YMnO$_3$박막의 결정상과 배향성을 제어함으로서 박막시편의 누설전류밀도 특성 및 강유전특성을 제어할 수 있음을 확인하였다.

새로운 전계 제한테 구조를 갖는 탄화규소 기판의 쇼트키 다이오드의 제작과 특성 분석 (Fabrications and Analysis of Schottky Diode of Silicon Carbide Substrate with novel Junction Electric Field Limited Ring)

  • 정희종;한대현;이용재
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1281-1286
    • /
    • 2006
  • 초고내압용 (1,200 V급) 의 플래너 접합 장벽 쇼트키 정류기 개발을 위해서 기존의 실리콘 재질 대신에 탄화규소 (4H-SiC) 제질을 사용하였다 . 기판의 크기는 2 인치 웨이퍼이며, 농도는 $3*10^{18}/cm^{3}$$n^{+}-$형이며, 에피층은 두께 $12{\mu}m$, 농도는 $5*10^{15}/cm^{-3}\:n-$형이다. 제작 소자는 접합 장벽 쇼트키 다이오드이며, 항복전압을 개선시키기 위해 고농도 의 보론 보호테의 불순물 분포를 사각모양 설계하였으며, 보호태의 폭과 간격을 변화하였다 . 정류성 접촉 금속은 $Ni(3,000\:{\AA})/Au(2,000\:{\AA})$ 사용하였다 . 결과로써, 소자의 특성은 온-상태 전압이 1.26 V, 온-상태 저항은 m$45m{\Omega}/cm^{3}$으로 낮은 특성과역방향 항복전압은 1,180 V의 최대값이며, 이 항복전압의 역방향 누설전류밀도는 $2.26*10^{-5}A/CM^{3}$의 값이며, 전기적 파라미터의 특성 결과가 개선되었다.