• Title/Summary/Keyword: Leakage current density

Search Result 482, Processing Time 0.026 seconds

Electrical Properties of (Ba, Sr)TiO$_3$ Thin Film Deposited on RuO$_2$Electrode

  • Park, Chi-Sun;Kim, In-Ki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.30-39
    • /
    • 2000
  • The variation of electrical properties of (Ba, Sr)TiO$_3$[BST] thin films deposited of RuO$_2$electrode with (Ba+Sr)/Tr ration was investigated. BST thin films with various (Ba+Sr)/Tr ration were deposited on RuO$_2$/Si substrates using in-situ RF magnetron sputtering. It was found that the electrical properties of BST films depends on the composition in the film. The dielectric constant of the BST films is about 190 at the (Ba+Sr)/Tr ration of 1.0, 1,025 and does not change markedly. But , the dielectric constant degraded to 145 as the (Ba+Sr)/Tr ratio increase to 1.0. In particular, the leakage current mechanism of the films shows the strong dependence on the (Ba+Sr)/Tr ration in the films. At the ration (Ba+Sr)/Tr=1,025, the Al/BST/RuO$_2$ capacitor show the most asymmetric behavior in the leakage current density, vs, electric field plot. It is considered that the leakage current of the (Ba+Sr)/Tr=1,025 thin films is controlled by the battier-Iimited process, i,e, Schottky emission.

  • PDF

Relation between Surface degradation and Anti-pollution Characteristics in RTV Silicone Rubber (RTV 실리콘 고무의 표면열화와 내오손 특성과의 상관관계)

  • 연복희;이태호;허창수;이상엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.598-606
    • /
    • 2000
  • In this paper we investigated the relation between the surface degradations and anti-pollution characteristics of Room Temperature Vulcanized(RTV) silicone rubber coating that has different roughness through immersing into saline water. We utilized several analytic techniques such as atomic force microscopy(AFM) scaning electron microscopy(SEM) contact angle Salt Deposit Density(SDD) and average leakage current under the condition of salt fog. It is found that the surface roughness of treated RTV silicone rubber increased and the hydrophobicity of sample surface decreased with increasing the duration o immersion into water due to the erosion of base polymer the melting down alumina trihydrate(ATH) and the diffusion of Low Molecular weight(LMW) fluid. Despite the roughness of surface had been increased by water immersion excellant anti-pollution and recovery characteristics were maintained and SDD saturated to 0.1~0.14mg/cm$^2$. The average leakage current under salt fog increased with surface roughness. Measurement of average leakage current will be helpful to investigate surface degradation and lifetime expectation of RTV silicone coating.

  • PDF

PACVD of Plasma Polymerized Organic Thin Films and Comparison of their Electrochemical Properties

  • I.S. Bae;S.H. Cho;Kim, M.C.;Y.H. Roh;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.53-53
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100) glass and metal substrates using thiophene and ethylcyclohexane precursors by PECVD method. In order to compare electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30~100 W. AFM showed that the polymer films with smooth surface and sharp interface could be grown under various deposition conditions. Impedance analyzer was utilized for the determination of I-V curve for leakage current density and C-V for dielectric constants, respectively. To obtain C-V curve, we used a MIM structure of metal(Al)-insulator(plasma polymerized thin film)-metal(Pt) structure. Al as the electrode was evaporated on the thiophene films that grew on Pt coated silicon substrates, and the dielectric constants of the as-grown films were then calculated from C- V data measured at 1MHz. From the electrical property measurements such as I-V and C-V characteristics, the minimum dielectric constant and the best leakage current of thiophene thin films were obtained to be about 3.22 and $1{\;}{\times}10^{-11}{\;}A/cm^2$. However, in case of ethylcyclohexane thin films, the minimum dielectric constant and the best leakage current were obtained to be about 3.11 and $5{\;}{\times}10^{-12}{\;}A/cm^2$.

  • PDF

Dielectric Properties of $Ta_2O_{5-X}$ Thin Films with Buffer Layers

  • Kim, In-Sung;Song, Jae-Sung;Yun, Mun-Soo;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.208-213
    • /
    • 2002
  • The present study describe the electrical performance of amorphous T $a_2$ $O_{5-X}$ fabricated on the buffer layers Ti and Ti $O_2$. T $a_2$ $O_{5-X}$ thin films were grown on the Ti and Ti $O_2$ layers as a capacitor layer using reactive sputtering method. The X-ray pattern analysis indicated that the two as-deposited films were amorphous and the amorphous state was kept stable on the RTA(rapid thermal annealing) at even $700^{\circ}C$. Measurements of dielectric properties of the reactive sputtered T $a_2$ $O_{5-X}$ thin films fabricated in two simple MIS(metal insulator semiconductor), structures, (Cu/T $a_2$ $O_{5}$ Ti/Si and CuT $a_2$ $O_{5}$ Ti $O_2$Si) show that the amorphous T $a_2$ $O_{5}$ grown on Ti showed high dielectric constant (23~39) and high leakage current density(10$^{-3}$ ~10$^{-4}$ (A/$\textrm{cm}^2$)), whereas relatively low dielectric constant (~15) and tow leakage current density(10$^{-9}$ ~10$^{-10}$ (A/$\textrm{cm}^2$)) were observed in the amorphous T $a_2$ $O_{5}$ deposited on the Ti $O_2$ layer. The electrical behaviors of the T $a_2$ $O^{5}$ thin films were attributed to the contribution of Ti- $O_2$ and the compositionally gradient Ta-Ti-0, being the low dielectric layer and high leakage current barrier. In additional, The T $a_2$ $O_{5}$ Ti $O_2$ thin films exhibited dominant conduction mechanism contributed by the Poole-Frenkel emission at high electric field. In the case of T $a_2$ $O_{5}$ Ti $O_2$ thin films were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated thin films.films.

Structural, Electrical and Optical Properties of $HfO_2$ Films for Gate Dielectric Material of TTFTs

  • Lee, Won-Yong;Kim, Ji-Hong;Roh, Ji-Hyoung;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.331-331
    • /
    • 2009
  • Hafnium oxide ($HfO_2$) attracted by one of the potential candidates for the replacement of si-based oxides. For applications of the high-k gate dielectric material, high thermodynamic stability and low interface-trap density are required. Furthermore, the amorphous film structure would be more effective to reduce the leakage current. To search the gate oxide materials, metal-insulator-metal (MIM) capacitors was fabricated by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass with different oxygen pressures (30 and 50 mTorr) at room temperature, and they were deposited by Au/Ti metal as the top electrode patterned by conventional photolithography with an area of $3.14\times10^{-4}\;cm^2$. The results of XRD patterns indicate that all films have amorphous phase. Field emission scanning electron microscopy (FE-SEM) images show that the thickness of the $HfO_2$ films is typical 50 nm, and the grain size of the $HfO_2$ films increases as the oxygen pressure increases. The capacitance and leakage current of films were measured by a Agilent 4284A LCR meter and Keithley 4200 semiconductor parameter analyzer, respectively. Capacitance-voltage characteristics show that the capacitance at 1 MHz are 150 and 58 nF, and leakage current density of films indicate $7.8\times10^{-4}$ and $1.6\times10^{-3}\;A/cm^2$ grown at 30 and 50 mTorr, respectively. The optical properties of the $HfO_2$ films were demonstrated by UV-VIS spectrophotometer (Scinco, S-3100) having the wavelength from 190 to 900 nm. Because films show high transmittance (around 85 %), they are suitable as transparent devices.

  • PDF

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

PZT thin capacitor characteristics of the using Pt-Ir($Pt_{80}Ir_{20}$)-alloy (Pt-Ir($Pt_{80}Ir_{20}$)-alloy를 이용한 PZT 박막 캐패시터 특성)

  • Jang, Yong-Un;Chang, Jin-Min;Lee, Hyung-Seok;Lee, Sang-Hyun;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.47-52
    • /
    • 2002
  • A processing method is developed for preparing sol-gel derived $Pb(Zr_{1-x}Ti_x)O_3$ (x=0.5) thin films on Pt-Ir($Pt_{80}Ir_{20}$)-alloy substrates. The as-deposited layer was dried on a plate in air at $70^{\circ}C$. And then it was baked at $1500^{\circ}C$, annealed at $450^{\circ}C$ and finally annealed for crystallization at various temperatures ranging from $580^{\circ}C$ to $700^{\circ}C$ for 1hour in a tube furnace. The thickness of the annealed film with three layers was $0.3{\mu}m$. Crystalline properties and surface morphology were examined using X-ray diffractometer (XRD). Electrical properties of the films such as dielectric constant, C-V, leakage current density were measured under different annealing temperature. The PZT thin film which was crystallized at $600^{\circ}C$ for 60minutes showed the best structural and electrical dielectric constant is 577. C-V measurement show that $700^{\circ}C$ sample has window memory volt of 2.5V and good capacitance for bias volts. Leakage current density of every sample show $10^{-8}A/cm^2$ r below and breakdown voltage(Vb) is that 25volts.

  • PDF

Electrical Properties of $(Sr_{0.85}Ca_{0.15})TiO_3$ Thin Films with Top Electrodes (상부전극에 따른 $(Sr_{0.85}Ca_{0.15})TiO_3$ 박막의 전기적 특성)

  • Jo, Chun-Nam;Kim, Jin-Sa;Sin, Cheol-Gi;O, Jae-Han;Choe, Un-Sik;Kim, Chung-Hyeok;Lee, Jun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.107-112
    • /
    • 2000
  • $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films were deposited on Pt-coated $TiO_2/SiO_2/Si$ wafer by the rf sputtering method. Experiments were conducted to investigate the electrical properties of SCT thin films with various top electrodes. Various top electrodes as Pt, Al, Ag, Cu were deposited on SCT thin films by sputter and thermal evaporator. The characteristics of C-F and C-V of SCT thin films were not obviously varied with various top electrodes, SCT thin films annealed at $600^{\circ}C$ represents as favorable capacitance characteristics than SCT thin films not annealed, and Pt top electrode have the most high capacitance. The characteristic of I-V of SCT thin films showed that Pt top electrode revealed more less leakage current density than other electrodes, had a leakage current density below 10-8$[A/cm^2]$ until 25[V] applied voltage.

  • PDF

A Study on the Switching and Retention Characteristics of PLT(5) Thin Films (PLT(5) 박막의 Switching 및 Retention 특성에 관한 연구)

  • Choi Joon Young;Chang Dong Hoon;Kang Seong Jun;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.367-370
    • /
    • 2004
  • We fabricated PLT(5) thin film on $Pt/TiO_x/SiO_2/Si$ substrate by using sol-gel method and investigated leakage current, switching and retention properties. The leakage current density of PLT(5) thin film was $3.56{\times}10^{-7}A/cm^2$ at 4V. In the examination of switching properties, pulse voltage and load resistance were $2V{\~}5V$ and $50{\Omega}{\~}3.3k{\Omega}$, respectively. Switching time had a tendency to decrease from 520ns to 140ns with the increase of pulse voltage, and also the time was increased from 140ns to $13.7{\mu}s$ with the increase of load resistance. The activation energy obtained from the relation of applied pulse voltage and switching time was about 143kV/cm. The error of switched charge density between hysteresis loop and experiment of polarization switching was about $10\%$. Also, polarization in retention was decreased as much as about $8\%$ after $10^5$s.

  • PDF

Bending Properties of the Flexible BMNO (Bi2Mg2/3Nb4/3O7) Capacitor Using Graphene Electrode (그래핀 전극을 이용한 유연한 BMNO (Bi2Mg2/3Nb4/3O7) 캐패시터의 굽힘 특성)

  • Song, Hyun-A;Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.387-391
    • /
    • 2012
  • Graphene was fabricated onto Ni/Si substrate using a rapid-thermal pulse CVD and they were transferred onto the Ti/PES flexible substrate. For top electrode applications of the BMNO dielectric films, graphene was patterned using a argon plasma. Through an AFM image and a leakage current density of the BMNO films grown onto various bottom electrodes before and after bending test, BMNO films grown onto the graphene bottom electrode showed no change of the microstructure and the leakage current density after the bend.