• Title/Summary/Keyword: Leaf width

Search Result 826, Processing Time 0.029 seconds

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

Evaluation of Cultivation Characteristics according to NO3- Ratio of Nutrient Solution for Korean Melon in Hydroponic Culture (양액의 NO3- 비율이 수경재배 참외의 생육과 수량에 미치는 영향)

  • Do Yeon Won;Ji Hye Choi;Chang Hyeon Baek;Na Yun Park;Min Gu Kang;Young Jin Seo
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • Korean melon (Cucumis melo L.) is grown mostly in Northeast Asia area, and as a fruit mainly produced in Korea, the yield per unit area continues to improve, but the cultivation method is limited to soil cultivation, so it is necessary to develop hydroponic cultivation technology for scale and labor-saving is needed. As the ratio of NO3- increased, the plant height, the leaf length, the leaf width, and the internode length became longer and larger. On the other hand, the SPAD value decreased. The lower the ratio of NO3-, the faster the female flower bloom, and there was no difference in fruit maturity between treatments. There was no difference in the shape of fruit according to the ratio of NO3-, and the hardness was higher as the ratio of NO3- was lower. The total yield from March to July was KM3 5,650 kg/10a and KM1 4,439 kg/10a, 27% higher in KM3 and, in particular, 36% higher in quantity from March to May, when Korean melon prices were high season. Therefore, it was judged that it would be appropriate to supply NO3- suitable for hydroponic cultivation of Korean melon, which was formalized in December and produced from spring, at the level of 6.5 to 10 me·L-1.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Proper Light Intensity, Potting Media, and Fertilization Level for Potted Orostachys iwarenge for. magnus (울릉연화바위솔 분화재배를 위한 적정 광도, 분용토 및 시비 수준)

  • Jeong, Kyeong-Jin;Chon, Young-Shin;Choi, Kyeong-Ok;Ha, Su-Hyeon;Yun, Jae-Gill
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.357-362
    • /
    • 2012
  • Proper light intensity, shading tolerance, potting media, and fertilization level were investigated to develop Orostachys iwarenge for. magnus (Korean name, Ullungyeonwhabawisol) as a potted ornamental plant. The plants were grown under different light intensity (52, 82, 90, and 97% shading). The best growth was shown at 52% shading, which indicated that the proper light intensity for O. iwarenge for. magnus is less than 52% of shading. Plant growth decreased severely at 82% shading and leaf color became lighter as the shading rate increased, which indicated that O. iwarenge for. magnus has no tolerance against low light intensity. To select a proper potting media, decomposed granite (DG), fertilizer-amended media (FAM), river sand (RS) were used as potting medium with different ratio of 60:20:20 (DG:FAM:RS, v/v/v), 80:20 (DG:FAM, v/v), 60:40 (DG:FAM, v/v), and 20:80 (FAM:RS, v/v). DG:FAM:RS (60:20:20) showed the highest values in shoot fresh weight, plant width, and number of runner in potted O. iwarenge for. magnus. Fresh weight of shoot part was 16 g in DG:FAM:RS (60:20:20), which was about 2 folds of those at the other medium. At the experiment for selection of proper fertilization level, plants showed a better growth as the concentration of hyponex solution and application frequency increased. Once drenching 1 week interval of hyponex solution diluted by 1,000 folds brought the highest results in fresh weight, plant width, and runner number. Particularly, fresh weight of shoot part was 35 g at once drenching per week of 1,000 folds solution, indicating 84% improvement comparing with non treatment (19 g).

Characteristics of Ju-Back and Effect of Ju-Back Fertilizer on Growth of Crop Plants (주류생산 부산물인 주박의 특성 규명 및 주박이 작물생육에 미치는 영향)

  • Lee, Jung-Hoon;Park, Sung-Min;Park, Chi-Duck;Jung, Hyuck-Jun;Kim, Hyun-Soo;Yu, Tae-Shick
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1562-1570
    • /
    • 2007
  • This experiment was conducted to develop fertilizer which promotes plant growth as well as suppressing pathogenic fungi. The fertilizer was made from the mixture of Ju-Back (Korean rice wine cake) and indigenous rhizosphere-bacterium. The main ingredients of Ju-Back were investigated as 6.04% total nitrogen, 42.59% total carbohydrate, 1.01% available phosphate, 73.42% organic matter, 7.72% potassium oxide, 1.35% calcium oxide, 0.53% magnesium oxide. The enzyme activities of Ju-Back were estimated to be 980 units/g for ${\alpha}-amylase$, 300 units/g for glucoamylase, and 1800 units/g for acid pretense. Indigenous rhizosphere bacteria which produced antifungal agent were isolated from soil, and was selected KMU-13 strain which can antagonize against various plant pathogenic fungi (Botrytis cinerea KACC 40573, Sclerotinia sclerotiorum KACC 41065, Fusairum oxysporum KACC 40052, Pythium aphanidermatum KACC 40156, Phytophthora capsici KACC 40476 and Glomerella cingulata KACC 40299). KMU-13 strain was identified as Bacillus subtilis KMU-13 by biochemical and 16s rDNA analysis. The organic fertilizer was made as prototype which was composed 20% Ju-Back, 70% carrier, 9.7% microorganism cultivated solution, 0.3% trace-element. We also investigated an application of fertilizer using Ju-Back for cultivating lettuce (Lactuca sativar) which were grown in three soil conditions that had chemical fertilizer, barnyard manure, lime power, urea, potassium chloride and superphosphate as a control, the whole quantity (80 kg/10a) of posted fertilizer with the control and the half quantity (40 kg/10a) with the control. The growth characteristics were examined and analysed with several weeks interval from 3 weeks to 8 weeks on head length (cm), head width (cm/head), number of leaf and fresh weight (g/plant). The results are summarized as follows. The head width and fresh weight of lettuce were the highest at posted fertilizer 1 (whole quantity) was applied chemical, organic matter (Ju-Back) and carrier. The head length was the highest at posted fertilizer 2 (whole quantity) was applied Ju-Back only.

Vegetative Propagation and Morphological Characteristics of Amelanchier spp. with High Value as Fruit Tree for Landscaping (정원용 유실수로서 가치가 높은 채진목속(Amelanchier spp.)의 형태적 특성 및 영양번식방법)

  • Kang, Ho Chul;Hwang, Dae Yul;Ha, Yoo Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • This study was carried out to investigate the growth characteristics and propagation methods of the Korean native Amelanchier asiatica, A. arborea, and A. alnifolia as fruit trees for gardens. Due to the lack of recent research on Amelanchier spp., their superficial classification is still unclear and the names are being used interchangeably. The results are obtained as follows : A. arborea and A. alnifolia were globular type multi-stemmed shrubs. A 20-year-old tree of A. asiatica was 7.8m in height, with a 5.2m crown width, with one trunk. As for the morphological characteristics, leaves of A. asiatica were oblong, with an acuminate of, 6.1cm and 3.6cm width, but A. arborea and A. alnifolia had acute obovate leaves. The leaf size of A. alnifolia was the largest among the three species. The flower size of A. asiatica was bigger than that of A. arborea and A. alnifolia. In addition, its petals and flower clusters were also the largest among the three species. The flowering of A. asiatica initiated on April 21 and then bloomed for a duration of 24 days in Osan, while that of A. arborea and A. alnifolia initiated flowering on April 12 and then bloomed for a duration of 22 days in the same location. The fruit of A. arborea and A. alnifolia were green on May 10~12, it changed into purplish red on May 24~26, and its matured on June 1~3. The duration of fruit persistence of A. arborea and A. alnifolia were 48~50 days. On the other hand, A. asiatica showed greenish fruit on May 20, it became red on September 4, and had fallen by October 3. The fruit size was the largest at 1.03cm of height and 1.12cm of diameter in the A. arborea, followed by the big berry of A. alnifolia and the smallest fruit in the native, A. asiatica. It was difficult to root due to the hardwood cutting of A. arborea at a 40% rate of rooting. In the softwood cutting, the rooting rate of A. arborea was increased by the treatment with concentrated IBA, especially at 5,000 and 7,000ppm. The optimum date for cutting was on June 27, when the rooting rate was more than 80%. The most effective method for rooting of A. arborea was rootone or 7,000 ppm IBA treatment on June 27 softwood cuttings, which showed a rooting rate of over 80%.

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Effects of Coir Substrate Application and Substrate Volume on the Growth and Yields of Strawberry in a Hydroponically Cultured System (딸기 수경재배에 코이어 배지 적용과 근권부 배지 용량이 생육 및 수확량에 미치는 영향)

  • Hwang, Jeongsu;Yun, Sungwook;Kwon, Jinkyung;Park, Minjung;Lee, Dongsoo;Lee, Heeju;Lee, Siyoung;Lee, Sanggyu;Hong, Youngsin
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.163-169
    • /
    • 2022
  • This study was conducted to examine an alternative cultivating method that uses coir substrates in a hydroponically cultured system. Three treatment conditions were applied with one-layer substrate (10 cm height) with a coir chip and dust ratio of 5:5 (Treatment A), two-layer coir substrate (20 cm height) with a coir chip and dust ratio of 5:5 (Treatment B), one-layer coir substrate (15 cm height) with a coir chip and dust ratio of 7:3 (Treatment C). The control condition was a plastic container filled with a coir chip and dust ratio of 5:5. Various criteria were measured and compared between the treatments and the control. The yield of strawberry was smaller in the control than in the treatments. No significant difference in growth characteristic was found in the height treatments of the coir substrates. The net photosynthetic rate of the treatments was 14.68-15.76 µmol CO2·m-2·s-1. This does not show a statistically significant difference. The root activity was better in treatment B and C than in treatment A and the control. The length and width of leaves were measured as 4.04-4.13 cm and 3.26-3.34 cm. These results are not statistically significant. The leaf length and width ratio was 1.27 in the control and 1.24 in the treatments. The findings show that no statistically significant benefit was found when utilizing coir substrates with different height treatments in the hydroponic culture system. However, the harvested fruit per plant weights 72.38 g in treatment A and 48.69 g in treatment C. The number of harvested fruit was least in treatment C in which a coir chip and dust ratio of 7:3 was applied. Therefore, further research is needed to examine how the chip and dust ratio in coir substrate affects growth characteristics.

Effects of Various Light Sources on the Carotenoid and Glucosinolate Contents in Chinese Cabbage (Brassica rapa L. ssp. pekinensis) (다양한 광원이 배추 내 Carotenoid와 Glucosinolate 함량에 미치는 영향)

  • Sung, Ho-Young;Jo, Lee-Kyeong;Chun, Jin-Hyuk;Woo, Hyun-Nyung;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • BACKGROUND: Chinese cabbage biosynthesizes various phytochemicals including carotenoids and glucosinolates. Environmental stress has a major effect on the growth and yields of vegetables, and can significantly affect nutritionally important phytochemicals. Phytochemicals of plants are influenced by light, temperature, carbon dioxide, and growing conditions. The aim of this study was to investigate the effect of various light sources on carotenoid and glucosinolate contents in Chinese cabbage. METHODS AND RESULTS: [Experiment I] Set the control (field control, FC) on the ground. Using acrylic sunlight, experiments were set up transparency box (field transparency, FT), red box (field red, FR) and blue box (field blue, FB). [Experiment II] Set the control (chamber control, CC) in the greenhouse. Using plant growth chamber with artificial light, experiments were set up LED red (chamber red, CR), LED blue (chamber blue, CB), LED mixed red+blue (chamber red+blue, CRB) and fluorescent (chamber fluorescent, CF). After plant growth, Chinese cabbage was harvested at 110 days after sowing (DAS). The status of plants growth (leaf length, width, fresh weight etc.) was immediately investigated. Carotenoid and GSL contents were analyzed by HPLC. [Experiment I] Results documented that the ranges of total carotenoid contents were 25.39 ~ 58.80 mg/kg dry wt for lutein, 0.84~ 4.22 mg/kg dry wt for zeaxanthin, and 3.85~18.71 mg/kg dry wt for ${\beta}$-carotene. Lutein was the highest for the content and the largest for the variation as well. [Experiment II] Results documented that the ranges of total carotenoid contents were 24.66~137.96 for lutein, 2.51~20.65 for zeaxanthin, and 8.40~49.80 mg/kg dry wt for ${\beta}$-carotene. The total carotenoid contents of CR (156.62) and CB (115.90) were 1.6~2.3 times larger than the other treatments, and ${\beta}$-carotene content was about twice as high as that of the other treatments on the CR (38.74 mg/kg dry wt.). [Experiment I] Total GSL content was the highest in FT (19.76) that was higher 1.7 times than the lowest treatment ($11.39{\mu}mol/g\;dry\;wt$.). [Experiment II] The total content of GSL was highest in CRB (4.19) and lowest in CF ($2.88{\mu}mol/g\;dry\;wt$.). In the CRB, total GSL contents ($4.19{\mu}mol/g\;dry\;wt$.) was the highest. CONCLUSION: Total and individual carotenoid and GSL contents in Chinese cabbage show significant differences under different light sources. Red and blue lights contribute to significant carotenoids expression and antioxidant activity for nutrition and health benefits. These results concluded that the introduction of varying lights affected the synthesis of important nutrient compounds in Chinese cabbage. It is predicted that the application of good light source enhances the accumulation of functional compounds.

Seed Production Studies in Italian Ryegrass ( Lolium multiflorum Lam. Itailcum ) I. Effect of seeding time and seed rates of Italian ryegrass, cv. Tetrone on seed production (이탈리안 라이그라스의 종자생산에 관한 연구. 제1보. 파종기와 파종량이 종자에 미치는 영향)

  • 박병훈;이남종
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.3
    • /
    • pp.226-234
    • /
    • 1984
  • In order ti find out the optimum seeding time(OST) and optimum seed rate(OSR) of Italian ryegrass on seed production, this studies with tetraploid cv. Tetrone were carried out on the experimental field of Livestock Experiment Station. Treatments included seed rates of 1, 2, 3 and 4 kg per 10a and combined with seeding time on 20, 30 Aug, 9, 19 and 29, September 1983. Seeds were sown in rows 50 cm apart and were spaced in a continuous line with width of 15 cm within the rows. The results are summarized as follows: 1. Autumn tillers could be classified into three groups from winter-killing point of view, namely winter-killing completely, damaged growing point only and living tillers. 2. The young inflorescence-bearing stem in Italian ryegrass which were sown earlier than 9. September were more susceptible to winter killing. Tiller buds in those stems which originated from an axillary buds at the stem base within senescent leaf-sheaths emerged lately in spring, and consequently heading was delayed, culm length shortened and seed yield reduced. 3. Tiller buds which originated from damaged growing point only and living tillers in moderate shoots emerged early in spring and those tillers became mainly spike-bearing culm. 4. The emergence-time of tillers influenced on culm-, spike- length and ripenness more than seeding time and seed rate. 5. Seed yield was mostly affected by the number of spikes per unit area. 6. For the safety of over-wintering and enough spikes on seed production, OST and OSR at Suweon were the last part of September and 2-3 kg per 10a, respectively. Especially OSR was 2 kg per 10a for early and 3 kg per 10a for late OST.

  • PDF