• Title/Summary/Keyword: Leaf absorption spectra

Search Result 8, Processing Time 0.016 seconds

Dyeing Properties and Storage Stability of Leaf Powder Prepared from Dyer's Knotweed (I) - by Freeze Drying method - (생쪽잎분말의 염색성 및 저장성 (I) - 동결건조방법 -)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-Il
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.10-20
    • /
    • 2009
  • The objective of this study is to investigate the efficacy of leaf powder colorants as substitutes for traditional fresh juice extract dyeing. Three kinds of leaf powder colorants were prepared by freeze drying method with or without deep freezing as pre-treatment: one powder colorant from fresh leaf juice with deep freezing; two kinds of powder colorant from fresh leaves with and without deep freezing. Their dyeing properties and storage stabilities were studied and compared with the traditional fresh juice extract dyeing. The presence of indigo in the powder colorants was confirmed by UV/Visible absorption spectra. They showed absorption peak at 602nm which was same with indigo absorption peak. Dyeing was done at low temperature around 6$^{\circ}C$. All three powder colorants produced B colors on silk fabrics, showing similar color to the one dyed traditionally with fresh juice extract. The powder colorants from leaves gave higher color strength than the powder from leaf juice. The powder colorant prepared from leaves with deep freezing was the most stable for long term storage as its color and color strength were not changed after 360 days. So, this was used for further dyeing to study the effects of concentration and repeat dyeing on color strength and colorfastness. Fastnesses to dry cleaning and rubbing were fairly good above 4 rating. Further study is needed to improve light fastness. It was concluded that the leaf powder colorant with deep freezing could be used as a substitute for traditional juice extract dyeing at all seasons.

Dyeing Properties and Storage Stability of Leaf Powder Prepared from Dyer's Knotweed(II) - by Hot Air and Room Temperature Drying Methods - (생쪽잎분말의 염색성 및 저장성(II) - 열풍 및 상온건조방법 -)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-II
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.23-32
    • /
    • 2009
  • The objective of this study is to investigate the efficacy of leaf powder colorants as substitutes for traditional indigo dyeing. Leaf powder colorants were prepared by hot air($50^{\circ}C$) and room temperanrre($25^{\circ}C$) drying methods from fresh leaves. The presence of indigo in the leaf powder colorants was confirmed by UV/Visible absorption spectra. All the powder colorants showed broad absorption at 602 nm as same as synthetic indigo. Dyeing was done by reduction method with sodium hydrosulfite and sodium hydroxide. Leaf powder colorants produced blue color on silk fabrics, showing similar color to the one dyed traditionally with fresh juice extract. The powder colorants prepared at room temperature drying were more stable for long term storage than that prepared by hot air drying. Thus, the powder colorants prepared by room temperature drying was reduced and dyed in one-step process without sodium hydroxide in the dyebath for further investigate dyeing properties. K/S value of the fabric dyed without sodium hydroxide was much higher than one dyed with sodium hydroxide. Regardless of the addition of sodium hydroxide, rubbing fastness was fairly good showing above 4 rating. Fastness to dry cleaning and light of the fabrics dyed without sodium hydroxide were mote higher than that dyed in alkaline condition.

Characteristics of Light Harvesting Chlorophyll-Protein Complex and Singlet Oxygen ($^1O_2$) Quenching in Leaf-burning Disease from Panax ginseng C. A. Meyer (인삼 Light Harvesting Chlorophyll Protein의 특성 및 엽소병에서 Singlet Oxygen($^1O_2$) Quenching)

  • 양덕조;이성택
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.158-164
    • /
    • 1989
  • In order to determine the relationships between the lea(-burning disease and the light harvesting chlorophyll-protein (LHCP) complex in Panax ginseng C. A. Meyer, we investigated the chlorophyll-protein (CP) complex of the thylakoid membrane and its characteristics. In P. ginseng four Cp-complex bands determined by non-denaturing SDS-PAGE were identified CP I'(containing reaction center of photosystem I and LHCP I antennae), CP I (reaction center of photosystem I) LHCP II** (oligoform of LHCP II), and LHCP II (photosystem II antennae, CP 26 and CP 29) by Bassis and Dunahay's procedures. Under our experimental condition, the CP I band was only observed in P. ginseng and the band intensity of LHCP II** in P ginseng was higher than in spinach and soybean. There were differences in the absorption and fluorescence spectra and chlorophyll a/b ratio of the CP-complex bands between P. ginseng and other Plants. The Polypeptidr content of P. ginseng thylakoid was lower than in spinach and soybean thylakoid, and the Polypeptide profiles of P. ginseng was low band intensity, especially about 29-35 kD, 55 kD, and 60 kD, compared to spinach and soybean. The inhibitory effects of 2,5-dimethylfuran, specific singlet oxygen ($^1O_2$) quencher, showed that singlet oxygen destroyed 60% of chl.a, 90% of chl.b and 70% of carotenoid in bleaching P. ginseng with leaf-burning disease.

  • PDF

Effects of Light Intensity on Photosynthesis and Growth in Seedling of Kalopanax pictus Nakai (광강도에 따른 음나무 유묘의 생장 및 광합성 특성)

  • Lee, Cheul-Ho;Shin, Chang-Ho;Kim, Kyu-Sick;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.244-249
    • /
    • 2006
  • This study was carried out to determine leaf photosynthetic capacity and growth characteristics of Kalopanax picturs Nakai seedlings under the different light condition. The seedlings grown under low light condition showed larger leaf area and petiole, and higher relative growth rate than those grown under high light condition. Chlorophyll contents as chlorophyll a, chlorophyll b, and chlorophyll a + b were high in the seedlings grown under highlight condition compared to those grown in low light conditions. The mean absorption value of shade leaf within photosynthetically active radiation (400-700 nm) was slightly higher than that of sun leaf, Leaf photosynthetic capacity of seedling was variable under the different light conditions. Seedling grown under high light condition had the higher photosynthetic capacity. Leaf photosynthetic rates under forestry and nursery were 700 and $300\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. However, leaf photosynthetic rates under high and low light conditions were 500 and $300\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively.

Effects of Simulated Acid Rain on Growth, Pigments and Leaf Surface Morphology of the Seedlings of Amaranthus tricolor L. (인공산성(人工酸性)비 처리(處理)가 색비름(Amaranthus tricolor L.) 유식물(幼植物)의 생장(生長) , 색소(色素) 및 엽표면형태(葉表面形態)에 미치는 영향(影響))

  • Kim, Jung-Sook;Lee, Jae-Seog
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.175-182
    • /
    • 1994
  • The experiment was performed to investigate the effects of simulated acid rain of several pH levels (2.0, 3.0, 4.0, and 5.0) on growth, injury, pigment compositions and leaf surface morphology of the seedlings of Amaranthus tricolor L. by foliar application. The growth of the tops and roots was markedly retarded below pH 3.0 and speck spots appeared on the leaf. Seven different peaks were detected by the absorption spectra of pigments of the leaf. But cv. Early splendor did not show the peaks at 473nm and 535nm, and nor did cv. Tricolor show the peaks at 476nm and 546nm. The pigment composition of leaves was affected by strong acid rain. As pH levels decreased, chlorophyll content increased. Leaf surface was eroded by acid rain, and leaf surface tissues were broken down and collapsed at the lower pH levels.

  • PDF

Effects of ammonia gas on soybean plant (대두(大豆)에 대한 Ammonia 가스의 영향)

  • Kim, B.Y.;Han, K.H.;Kim, S.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 1979
  • This experiment was conducted to find out the effects on soybean plant exposed with various concentration and different fumigation periods of ammonia gas ($0.2mg/{\ell}$). The yield of soybean, nitrogen and, chlorophyll contents in leaves, and percentage of destroyed leaf area were investigated. The results were summarized as: 1. The soybean yield losses and percentage of destroyed leaf area were positively correlated with concentration of inflicting ammonia gas respectively. The yield losses was higher at noon exposure time than at night exposure time. 2. The soybean yield was negatively correlated with the percentage of destroyed leaf area. 3. The highest percentage of destroyed leaf area had at afternoon exposure time (14:00-15:00 o'clock) by $0.2mg/{\ell}$ ammonia gas fumigation, and the lowest one had at midnight exposure time (22:00-23:00 o'clock). 4. According to the increasing concentration of ammonia gas, the total and water soluble nitrogen contents in soybean leaves were increased, but the contents of chlorphyll b on decreasing rate. 5. The nitrogen contents in plant were higher in the afternoon exposure than in the morning, but the contents of chlorophyll were higher at night time exposure than at day time. 6. The highest decreasing of absorption spectra of chlorohpyll in chloroplast had at 10:00-11:00 o'clock on fumigation time and the lowest one had at 22:00-23:00 o'clock.

  • PDF

Dyeing Properties of Cotton Fabrics Dyed with Extract from Dry Leaf of Indigo Plant (건조 쪽잎 추출액에 의한 면직물 염색성)

  • Song, Sung-Won;Cho, Kyung-Rae
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.18-24
    • /
    • 2008
  • The purpose of this study is to develop the dyeing method with dry leaves of indigo plant. Coloring matter was extracted from dry leaves of indigo plant with hot sodium hydroxide solution. The extract was reduced with sodium dithionite, and it was used for dyeing cotton fabrics under various conditions. UV-visible absorption spectra of extract, reduction rate of extracts by reducing agent, and the surface color of dyed cotton, lightfastness were examined. For the initial 20 minutes, the absorbance of indigo solution rapidly decreased. However, several hours later, the decreasing rate retarded. By repeating the dyeing process, the shade looked deeper and deeper. At $30-40^{\circ}C$, the value of K/S reached the highest point. The concentration of indigo solution in dye bath seemed to playa critical role for the reaction of the reducing agent. It was observed that the surface color of cotton fabrics was getting bluish and its degree of value and chroma seemed slightly decreased as the K/S value was increasing. The lightfastness was clearly enhanced by increasing the K/S value.

Effects of Sulfur Dioxide on Pigments, Frotein Content and Photosystem II Activity of Barley and Corn Leaves (보리와 옥수수 잎의 색소, 단백질 함량 및 관계II 활성에 미치는 ${SO}^2$의 영향)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.135-151
    • /
    • 1982
  • This investigation was carried out to clarify the changes of pigments and soluble protein, and photosystem II activity in the leaves of barley (${SO}_2$-sensitive) and corn (${SO}_2$-resistant) seedlings induced by the ${SO}_2$ fumigation (10, 50ppm). The pH changes of the leaf extract, the content of sulfite and sulfate, the activities of catalase, peroxidase, and polyphenoloxidase were compared in the leaves of barley and corn seedlings induced by ${SO}_2$ fumigation. The results are summarized as follows: An appreciable effect of pH change of leaf extract by ${SO}_2$ fumigation was observed in barley leaves (pH 6.10 to 5.18), but only a small change occurred in corn leaves (pH 5.66 to 5.50). The same pattern of pH changes was recorded when the solution of 0.2N HCl was added to leaf extract, providing lower buffering capacity of the barley leaves than corn leaves. After 2 hours of exposure to 10 ppm ${SO}_2$, the contents of ${SO}^{2-}_3$ and ${SO}^{2-}_4$ were increased in barley leaves, while only ${SO}^{2-}_4$ increased in corn leaves. After fumigation with 10ppm ${SO}_2$ for 2 hours, barley leaves showed significant decreases in activities of catalase, to 17% peroxidase, to 58%, and polyphenoloxidase, to 88%. Corn leaves showed increases in activities of peroxidase, to 136%, and polyphenoloxidase, to 128%. Absorption spectra of pigments obtained from ${SO}_2$-fumigated leaves were gradually decreased with the fumigation time increases, but the decrease was more significant in barley leaves. Fumigation with 50ppm ${SO}_2$ for 2 hours induced the greatest decomposition in carotenoid, followed by chlorophyll a and then chlorophyll b in barley leaves. The ratio of chlorophyll a/b was decreased from 4.1 to 3.6 in barley leaves, but in corn leaves it was maintained almost a constant level(4.9-4.8). The rate of decomposition of chlorophyll and carotenoid in corn leaves was very slow than those in the barley leaves. Fumigation with 50 ppm ${SO}_2$ for 2 hous, decreased the protein content of barley leaves to 59%, and that of corn leaves to 89%, and the extent of decrease in protein content was greater than that of pigments in barley and corn leaves. The rate of DCIP9dichlorophenol indophenol) photoreduction in ${SO}_2$-fumigated leaves was decreased to 18 and 67% in barley and corn leaves, respectively. However, DCIP photoreduction was considerably recovered about 32 and 92% with the addition of DPC(diphenylcarbazide) as an exogenous electron donor in barley and corn leaves, respectively.

  • PDF