• Title/Summary/Keyword: Lead determination

Search Result 290, Processing Time 0.024 seconds

Assessment of Zinc Requirement for Human (인체의 아연필요량 측정방법)

  • 윤진숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.346-353
    • /
    • 1995
  • The dietary requirement for zinc to maintain optimally the various metabolic and physiological funcitons is still under study. Human beings adapt to reductions in zinc intake by reducing the rate of growth or zinc excretion. Reductions in dietary zinc beyond the capacity to maintain homeostasis lead to utilization of zinc from an exchangeable pool. Loss of a small, critical amount of zinc from this pool leads to both biochemical and clinical signs of zinc deficiency. Zinc requirements have been assessed by balance studies and factorial method. As tissue zinc status influences endogenous losses and the dietary needs, individuls in good status may require higher amounts of zinc than those in poor status. While plasma zinc is insensitive to reducitons in dietary zinc, it is regarded as a valid, useful indicator of the exchangeable pool of zinc. Plasma metallothionein concentrations may prove useful for identifying poor zinc status. It has been suggested that functional end point measurement is the new direciton for zinc requirement. However, determination of the functional response to a marginal zinc intake is difficult because of the lack of a specific, sensitive indicator of zinc status. Presently, no good method for assessment of human zinc requirements exists.

  • PDF

Separation of $Cd^{2+}$ and $Pb^{2+}$ by means of their coprecipitation on $BaTiO(C_2O_4)_2{\cdot}4H_2O$ precipitate ($BaTiO(C_2O_4)_2{\cdot}4H_2O$ 공침법에 의한 $Cd^{2+}$$Pb^{2+}$의 분리)

  • Min, Chonkyu;Noh, Taeyong;Lee, Chul
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.31-34
    • /
    • 1997
  • Barium titanyl oxalate which is a precursor of barium titanate has been precipitated at pH 4~5 by a rapid addition of aqueous titanyl oxalate solution to artificial environmental water samples containing equivalent weight of $Ba^{2+}$ ions. Quantitative recoveries of $Cd^{2+}$ and $Pb^{2+}$ from the water samples has been confirmed and found to be usable as a possible method of preconcentration for their determination.

  • PDF

A new rock brittleness index on the basis of punch penetration test data

  • Ghadernejad, Saleh;Nejati, Hamid Reza;Yagiz, Saffet
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2020
  • Brittleness is one of the most important properties of rock which has a major impact not only on the failure process of intact rock but also on the response of rock mass to tunneling and mining projects. Due to the lack of a universally accepted definition of rock brittleness, a wide range of methods, including direct and indirect methods, have been developed for its measurement. Measuring rock brittleness by direct methods requires special equipment which may lead to financial inconveniences and is usually unavailable in most of rock mechanic laboratories. Accordingly, this study aimed to develop a new strength-based index for predicting rock brittleness based on the obtained base form. To this end, an innovative algorithm was developed in Matlab environment. The utilized algorithm finds the optimal index based on the open access dataset including the results of punch penetration test (PPT), uniaxial compressive and Brazilian tensile strength. Validation of proposed index was checked by the coefficient of determination (R2), the root mean square error (RMSE), and also the variance for account (VAF). The results indicated that among the different brittleness indices, the suggested equation is the most accurate one, since it has the optimal R2, RMSE and VAF as 0.912, 3.47 and 89.8%, respectively. It could finally be concluded that, using the proposed brittleness index, rock brittleness can be reliably predicted with a high level of accuracy.

Assignment of ¹H and $^{13}C$ Nuclear Magnetic Resonances of Ganglioside $G_{A1}$

  • 이경익;전길자;류경임;방은정;최병석;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.864-869
    • /
    • 1995
  • Investigation of the structures of the gangliosides has proven to be very important in the understanding of their biological roles such as regulation of differentiation and growth of cells. We used nuclear magnetic resonance spectros-copy in order to investigate the structure of GA1. In order to do this, the assignment of spectra is a prerequisite. Since GA1 does not have polar sialic acid, the spectral overlap is severe. In order to solve this problem, we use 2D NMR spectroscopy and heteronuclear 1H/13C correlated spectroscopy in this study. Here, we report the complete assignment of the proton and the carbon spectra of the GA1 in DMSO-d6-D20 (98:2, v/v). These assignments will be useful for interpreting 1H and 13C NMR data from uncharacterized oligosaccharides and for determining the linkage position, the number of sugar rings, and the sequence of new ganglioside. Amide proton in ring Ⅲ shows many interring nOes and has intramolecular hydrogen bonding. This appears to be an important factor in tertiary folding of GA1. Based on this assignment, determination of three dimensional structure of GA1 will be carried out. Studies on the conformational properties of GA1 may lead to a better understanding of the molecular basis of its functions.

Analysis of Surface and Thin Films Using Spectroscopic Ellipsometry (Spectroscopic Ellipsometry를 이용한 표면 및 박막의 분석)

  • 김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.73-86
    • /
    • 1990
  • The technique of Spectroscopic Ellipsometry (SE) has been examined with emphasis on its inherent sensitivity to the existence of thin films or surface equivalents. A brief review of related theories like the Fresnel reflection coefficients, the effect of a multilayer upon reflectivities, together with the validity of the effective medium theory and the modelling procedure, is followed by a short description of the experimental setup of a rotating polarizer type SE as well as the necessful expressions which lead to tan and cos. Out of its numerous, successful applications, a few are exampled to convince a reader that SE can be applied to a variety of research fields related to surface, interface and thin films. Specifically, those are adsorption and/or desorption on metals or semiconductors, oxidation process, formation of passivation layers on an electrode, thickness determination, interface between semiconductor and its oxide, semiconductor heterojunctions, surface microroughness, void distribution of dielectric, optical thin films, depth profile of multilayered samples, in-situ or in-vitro characterization of a solid surface immersed in electrolyte during electrochemical, chemical, or biological treatments, and so on. It is expected that the potential capability of SE will be widely utilized in a very near future, taking advantage of its sensitivity to thin films or surface equivalents, and its nondestructive, nonperturbing characteristics.

  • PDF

Foliar Micromorphological Response of In Vitro Regenerated and Field Transferred Plants of Oldenlandia umbellata L.: A Medicinal Forest Plant

  • Jayabal, Revathi;Rasangam, Latha;Mani, Manokari;Shekhawat, Mahipal Singh
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • Plant tissue culture techniques offer quick methods of regeneration of plants of medicinal importance but the survival chances of such plants are always questionable when shifted to the in vivo conditions. The present study enumerates the micromorphological developments in the leaves of in vitro regenerated and field transferred plantlets of Oldenlandia umbellata. The leaves developed in vitro after $4^{th}$ subcultures of multiplication phase and after 6 weeks of field transferred plants were used. Statistically significant differences in the number of stomata, veins, raphides, crystals and trichome density per square mm were observed. The improvements in stomatal apparatus and density (decreased from 41.85 to 32.20), developments in leaf architectural parameters and emergence of defense mechanism through increased numbers of raphides (8 to 15), crystals and trichomes (13.5 to 18.2) proved acclimation of tissue culture raised plantlets from in vitro to the in vivo environments lead to 100 % success in field establishment of the plantlets. The in vitro induced foliar abnormalities (changes in stomata, venation pattern, vein density, trichomes, crystals etc.) were repaired while hardening of plantlets in the greenhouse and finally in the field. The observed micromorphological response of leaves under altered environmental conditions could help in determination of proper stage of field transfer and prediction of survival percentage of in vitro regenerated O. umbellata plantlets.

Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Li, Tao;Zhang, Xiangning
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.469-477
    • /
    • 2019
  • The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

Determination of Optimal Buffer Size for Semiconductor Production System using Harmony Search Algorithm (하모니서치 알고리즘을 이용한 반도체 공정의 최적버퍼 크기 결정)

  • Lee, Byeong-Gil;Byun, Minseok;Kim, Yeojin;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.39-45
    • /
    • 2020
  • In the production process, the buffer acts as a buffer to alleviate some of the problems such as delays in delivery and process control failures in unexpected situations. Determining the optimal buffer size can contribute to system performance, such as increased output and resource utilization. However, there are difficulties in allocating the optimal buffer due to the complexity of the process or the increase in the number of variables. Therefore, the purpose of this research is proposing an optimal buffer allocation that maximizes throughput. First step is to design the production process to carry out the research. The second step is to maximize the throughput through the harmony search algorithm and to find the buffer capacity that minimizes the lead time. To verify the efficiency, comparing the ratio of the total increase in throughput to the total increase in buffer capacity.

A Study on the Limited Rate Power Capacity for Applications for Precision Passive Devices Based on Carbon Nanotube Materials (탄소나노튜브 소재의 정밀 수동소자 적용을 위한 한계 정격전력 용량에 관한 연구)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.269-274
    • /
    • 2022
  • We prepared carbon nanotube (CNT) paper by a vacuum filtration method for the use of a chip-typed resistor as a precision passive device with a constant resistance. Hybrid resistor composed of the CNT resistor with a negative temperature coefficient of resistance (T.C.R) and a metal alloy resistor with a positive T.C.R could lead to a constant resistance, because the resistance increase owing to the temperature increase at the metal alloy and decrease at the CNT could counterbalance each other. The constant resistance for the precision passive devices should be maintained even when a heat was generated by a current flow resulting in resistance change. Performance reliabilities of the CNT resistor for the precision passive device applications such as electrical load limit, environmental load limit, and life limit specified in IEC 60115-1 must be ensured. In this study, therefore, the rated power determination and T.C.R tests of the CNT paper were conducted. -900~-700 ppm/℃ of TCR, 0.1~0.2 A of the carrying current capacity, and 0.0625~0.125 W of the rated power limit were obtained from the CNT paper. Consequently, we confirmed that the application of CNT materials for the precision hybrid passive devices with a metal alloy could result in a better performance reliability with a zero tolerance.

Determination of escape rate coefficients of fission products from the defective fuel rod with large defects in PWR

  • Pengtao Fu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2977-2983
    • /
    • 2023
  • During normal operation, some parts of the fission product in the defective fuel rods can release into the primary loops in PWR and the escape rate coefficients are widely used to assess quantitatively the release behaviors of fission products in the industry. The escape rate coefficients have been standardized and have been validated by some drilling experiments before the 1970s. In the paper, the model to determine the escape rate coefficients of fission products has been established and the typical escape rate coefficients of noble gas and iodine have been deduced based on the measured radiochemical data in one operating PWR. The result shows that the apparent escape rate coefficients vary with the release-to-birth and decay constants for different fission products of the same element. In addition, it is found that the escape rate coefficients from the defective rod with large defects are much higher than the standard escape rate coefficients, i.e., averagely 4.4 times and 1.8 times for noble gas and iodine respectively. The enhanced release of fission products from the severe secondary hydriding of several defective fuel rods in one cycle may lead to the potential risk of the temporary shutdown of the operating reactors.