• Title/Summary/Keyword: Lead Shielding

Search Result 208, Processing Time 0.031 seconds

Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis (음경암의 방사선치료 시 자체 제작한 Device의 산란선 차폐 효과에 대한 유용성 평가)

  • Gim, Yang-Soo;Lee, Sun-Young;Lim, Suk-Gun;Gwak, Geun-Tak;Pak, Ju-Gyeong;Lee, Seung-Hoon;Hwang, Ho-In;Cha, Seok-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Purpose: We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. Materials and Methods: The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. $3{\times}3\;cm^2$, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$, $6{\times}6\;cm^2$, $7{\times}7\;cm^2$ field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. Results: The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with $3{\times}3\;cm^2$, 15.7-5.2 cGy with $4{\times}4\;cm^2$, 17.6-5.5 cGy with $5{\times}5\;cm^2$, 19.9-6.6 cGy with $6{\times}6\;cm^2$, 22.2-7.6 cGy with $7{\times}7\;cm^2$ and the measured dose without lead shielding were 7.1-2.6 cGy with $3{\times}3\;cm^2$, 8.9-3.6 cGy with $4{\times}4\;cm^2$, 12.3-4.8 cGy with $5{\times}5\;cm^2$, 14.6-5.0 cGy with $6{\times}6\;cm^2$ and 21.1~6.4 cGy with $7{\times}7\;cm^2$. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with $3{\times}3\;cm^2$, 6.9-1.6 cGy with $4{\times}4\;cm^2$, 5.3-0.8 cGy with $5{\times}5\;cm^2$, 5.3-1.5 cGy with $6{\times}6\;cm^2$ and 1.1-1.8 cGy with $7{\times}7\;cm^2$. Conclusion: Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance between the testicles and penis.

  • PDF

Characteristics of Superconductive Pb shield for a Whole Head MEG System (헬멧형 뇌자도 장치로의 활용을 위한 Pb 초전도 차폐의 특성)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • We have investigated the characteristics of a superconductive Pb shield for hemispherical shape and plate to improving signal-to-noise ratio(SNR) of biomagnetism. We measured the shielding factor for the position of helmet shape Pb and for changing the distance from Pb surface. To make a uniform magnetic field, a $1.5m{\times}1.5m$ set of the helmholtz coils activated at several frequencies. The shielding factor of hemispherical shape Pb was from 20 to 57 dB and of Pb plate was about $6{\sim}26dB$ as a function of distance from the lead surface. The shielding factor was rapidly reduced as increasing the distance from Pb surface. The white noise of superconductive quantum interference device(SQUID) with a superconductive shield was about $12fT/Hz^{1/2}$ at 1 Hz, $7fT/Hz^{1/2}$ at 100 Hz. The white noise was more increased about two times than conventional SQUID system without Pb shielding. An auditory signal was measured by first order gradiometer and magnetometer with Pb superconductive shield and compared the SNR. The SQUID system with Pb shield had better performance at low frequency noise level.

  • PDF

A Study on the Radiation Shielding Analysis for Reinforcing the Hot Cell Regular Concrete Shield Wall (핫셀의 일반 콘크리트 보강을 위한 방사선 차폐해석 연구)

  • 조일제;황용화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.985-990
    • /
    • 2003
  • In order to demonstrate Advanced Spent Fuel Conditioning Process (ACP), shielding facilities such as hot cell suitable to handling radionuclides and process property will be necessary. But the construction of new facilities needs much money, man-power and time, it is now scheduled to remodel the hot cell, which has already been installed and maintained at Irradiated Material Experiment Facility (IMEF) in the Korea Atomic Energy Research Institute (KAERI). The basic structure and concrete shield wall of hot cell partly have been constructed on the base floor in IMEF building in current status. And hot cell after remodeling will be used for carrying out the lab-scale experiment of ACP. The hot cell was built in accordance with 35 curies of fe-59(1.2 MeV) as design criteria of radiation dose limit. But the radioactive source of ACP is expected to be much higher than design criteria of IMEF, shielding ability of the hot cell in the current status is unsatisfactory to the hot test of ACP. Therefore shield wall shall be reinforced with heavy concrete, steel or lead. In this paper, dose rates are calculated according to ACP source, shielding materials, etc., and reinforcement structures are determined considering the current situation of hot cells, installation of shield windows and the easiness of work.

  • PDF

Evaluation of the Effectiveness of the Shielding Device and the Organ Dose of Subject During Bone Mineral Density (골밀도검사에서 피검자의 장기선량 측정 및 차폐기구의 효용성 평가)

  • Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • Bone mineral density is a examination to measure the amount of bone in patients with metabolic bone disease. It is a low dose, but may cause unnecessary exposure to the gonads and other organs located in the periphery when examining the lumbar and proximal femurs. Therefore, the purpose of this study was to evaluated the exposure dose for each organ exposed during the bone mineral density through simulation, and analyzed the applicability of the subject to radiation shielding devices using 3D printing materials. As a result, the highest dose was shown at 11.47 uSv in the breast during lumbar examination and 8.98 uSv in the testis during proximal femur examination. Also, the farther away from the examination site, the lower the effect of the scattering-ray. The shielding effect of using 3D printing shielding device showed high results in proportion to the effective atomic number and specific gravity of the printing material. Among the printing materials, ABS + W showed an effect of at least 78.72 to 96.3 9% compared to the existing lead material.

EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

  • Keum, Mi Hyun;Park, Sung Ho;Ahn, Seung Do;Cho, Woon-Kap
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.695-700
    • /
    • 2013
  • Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4%) included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 ($R{\cdot}m^2/Ci{\cdot}hr$), as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays

  • Hu, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.178-184
    • /
    • 2020
  • The traditional methods for radiation shield design always only focus on either the structure or the components of the shields rather than both of them at the same time, which largely affects the shielding performance of the facilities, so in this paper, a novel method for designing the structure and components of shields simultaneously is put forward to enhance the shielding ability. The method is developed by using the genetic algorithm (GA) and the MCNP software. In the research, six types of shielding materials with different combinations of elements such as polyethylene (PE), lead (Pb) and Boron compounds are applied to the radiation shield design, and the performance of each material is analyzed and compared. Then two typical materials are selected based on the experiment result of the six samples, which are later verified by the Compact Accelerator Neutron Source (CANS) facility. By using this method, the optimal result can be reached rapidly, and since the design progress is semi-automatic for most procedures are completed by computer, the method saves time and improves accuracy.

Lead-free inorganic metal perovskites beyond photovoltaics: Photon, charged particles and neutron shielding applications

  • Srilakshmi Prabhu;Dhanya Y. Bharadwaj;S.G. Bubbly;S.B. Gudennavar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1061-1070
    • /
    • 2023
  • Over the last few years, lead-free inorganic metal perovskites have gained impressive ground in empowering satellites in space exploration owing to their material stability and performance evolution under extreme space environments. The present work has examined the versatility of eight such perovskites as space radiation shielding materials by computing their photon, charged particles and neutron interaction parameters. Photon interaction parameters were calculated for a wide energy range using PAGEX software. The ranges of heavy charged particles (H, He, C, N, O, Ne, Mg, Si and Fe ions) in these perovskites were estimated using SRIM software in the energy range 1 keV-10 GeV, and that of electrons was computed using ESTAR NIST software in the energy range 0.01 MeV-1 GeV. Further, the macroscopic fast neutron removal cross-sections were also calculated to estimate the neutron shielding efficiencies. The examined shielding parameters of the perovskites varied depending on the radiation type and energy. Among the selected perovskites, Cs2TiI6 and Ba2AgIO6 displayed superior photon attenuation properties. A 3.5 cm thick Ba2AgIO6-based shield could reduce the incident radiation intensity to half its initial value, a thickness even lesser than that of Pb-glass. Besides, CsSnBr3 and La0.8Ca0.2Ni0.5Ti0.5O3 displayed the highest and lowest range values, respectively, for all heavy charged particles. Ba2AgIO6 showed electron stopping power (on par with Kovar) better than that of other examined materials. Interestingly, La0.8Ca0.2Ni0.5Ti0.5O3 demonstrated neutron removal cross-section values greater than that of standard neutron shielding materials - aluminium and polyethylene. On the whole, the present study not only demonstrates the employment prospects of eco-friendly perovskites for shielding space radiations but also suggests future prospects for research in this direction.

Shielding Analysis of the Material and Thickness of Syringe Shield on the Radionuclide (방사성 핵종별 주사기 차폐기구의 재질 및 두께에 대한 차폐분석)

  • Cho, Yong-In;Kim, Chang-Soo;Kang, Se-Sik;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.282-288
    • /
    • 2015
  • A monte carlo simulation about shielding material and thickness of the syringe shield for radiation shield was performed. As a result of analysis, high atomic number materials such as tungsten, lead and bismuth have the highest shielding effect. However, $^{18}F$, $^{67}Ga$ and $^{111}In$ show high energy distribution in the region with thin shielding thickness. As the thickness of shielding materials increased, the energy distribution decreased due to reduction of ${\gamma}$-ray. In the case of low atomic number materials, they, showed energy distribution from highest to lowest, were barium sulfate, steel, stainless, iron and copper. Aluminum, plastic, concrete and water showed diverse aspect. they showed relatively high energy distribution because of increased ${\gamma}$-ray that penetrate the shield.

Comparison on the Performance Medical Radiation Shielding Made of Rubber Sheet (의료방사선 차폐 고무시트의 제작과 성능 비교)

  • Kim, Seon-Chil
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.15-18
    • /
    • 2010
  • Main component of radiography barrier aprons is lead. To manufacture a lead-free barrier sheath, barium sulfate and organic iodine-based chemicals should be mixed with rubber. Barrier capacity was tested in the medical field. To improve adaptation of rubber with the mixture, raw materials went through milling, agitation, and extruding processes. Three sheaths were manufactured with 30%, 80%, and 120% sulfate barium, respectively. This study found 10% lower barrier capacity of lead-free barrier than the traditional lead-containing rubber sheath. Problems, however, were confronted during the agitation and extruding processes. Mixing with rubber was a technically demanding job. Inconsistent depth, problems with thermal processing and dissipation were encountered as well.

  • PDF

The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses

  • Mahmoud, K.A.;El-Agawany, F.I.;Tashlykov, O.L.;Ahmed, Emad M.;Rammah, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3816-3823
    • /
    • 2021
  • The mechanical features evaluated theoretically using Makishima-Mackenzie's model for glasses xBaO-(50-x) PbO-50P2O5 where x = 0, 5, 10, 15, 20, 30, 40, and 50 mol%. Wherefore, the elastic characteristics; Young's, bulk, shear, and longitudinal modulus calculated. The obtained result showed an increase in the calculated values of elastic moduli with the replacement of the PbO by BaO contents. Moreover, the Poisson ratio, micro-hardness, and the softening temperature calculated for the investigated glasses. Besides, gamma and neutron shielding ability evaluated for the barium doped lead phosphate glasses. Monte Caro code (MCNP-5) and the Phy-X/PSD program applied to estimate the mass attenuation coefficient of the studied glasses. The decrease in the PbO ratio has a negative effect on the MAC. The highest MAC decreased from 65.896 cm2/g to 32.711 cm2/g at 0.015 MeV for BPP0 and BPP7, respectively. The calculated values of EBF and EABF showed that replacement of PbO with BaO contents in the studied BPP glasses helps to reduce the number of photons accumulated inside the studied BPP glasses.