DOI QR코드

DOI QR Code

Shielding Analysis of the Material and Thickness of Syringe Shield on the Radionuclide

방사성 핵종별 주사기 차폐기구의 재질 및 두께에 대한 차폐분석

  • 조용인 (동남권 원자력의학원 핵의학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2015.03.06
  • Accepted : 2015.04.10
  • Published : 2015.07.28

Abstract

A monte carlo simulation about shielding material and thickness of the syringe shield for radiation shield was performed. As a result of analysis, high atomic number materials such as tungsten, lead and bismuth have the highest shielding effect. However, $^{18}F$, $^{67}Ga$ and $^{111}In$ show high energy distribution in the region with thin shielding thickness. As the thickness of shielding materials increased, the energy distribution decreased due to reduction of ${\gamma}$-ray. In the case of low atomic number materials, they, showed energy distribution from highest to lowest, were barium sulfate, steel, stainless, iron and copper. Aluminum, plastic, concrete and water showed diverse aspect. they showed relatively high energy distribution because of increased ${\gamma}$-ray that penetrate the shield.

몬테카를로 기법을 기반으로 한 모의실험을 통해 방사성 핵종별 주사기 차폐기구의 재질 및 두께에 대한 차폐분석 결과, 텅스텐, 납, 비스무스와 같이 상대적으로 원자번호가 높은 재질의 경우 거의 모든 핵종에서 가장 높은 차폐효과를 보였다. 그러나 $^{18}F$, $^{67}Ga$, $^{111}In$ 선원의 경우, 차폐두께가 낮은 영역에서 저 원자번호 재질보다 더 높은 에너지를 나타냈으나, 이후 증가된 차폐두께에서는 투과되어 도달하는 감마선이 감소하여 더 낮은 에너지 분포를 나타냈다. 그 외 상대적으로 원자번호가 낮은 재질의 경우 구리, 철, 스테인리스강, 황산바륨의 순서로 에너지가 낮은 분포를 나타냈고, 알루미늄, 플라스틱, 콘크리트, 물의 경우 핵종별로 각기 다른 양상을 나타냈으며, 상대적으로 투과된 감마선의 증가로 전체적으로 높은 에너지 분포를 보여 차폐효과가 떨어지는 것으로 나타냈다.

Keywords

References

  1. F. Vanhavere, E. Carinou, and L. Donadille, "An Overview on Extremity Dosimetry In Medical Applications," Radiat. Prot. Dosim, Vol.129, No.1-3, pp.350-355, 2008. https://doi.org/10.1093/rpd/ncn149
  2. Korea Radioisotope Association, "Statistics on the Radiation Practices in Korea," Kor. Assoc. Radiat. Appl. pp.120-125, 2013.
  3. S. J. Choi, Y. D. Hong and S. Y. Lee, "Therapeutic radionuclides," Nucl. Med. Mol. Imaging, Vol.40, No.2, pp.58-65, 2006.
  4. C. Chiesa, V. De Sanctis, and F. Crippa, "Radiation dose to technicians per nuclear medicine procedure: comparison between technetium-99m, gallium-67, and iodine-131 radiotracers and fluorine-18 fluorodeoxy -glucose," Eur. J. Nucl. Med. Vol.24, pp.1380-1389, 1997. https://doi.org/10.1007/s002590050164
  5. J. C. Park and S. J. Pyo, "Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers," J. Kor. Soc. Radio. Technol, Vol.35, No.2, pp.141-149, 2012.
  6. ICRP, "Radiation Dose to Patients from Radio -pharmaceuticals," - Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann. ICRP, Vol.38, No.1-2, Annex E 2008.
  7. James E. Martin, "Physics for Radiation Protection: A handbook," Wiley-VCH Pub., pp.367-423, 2006.
  8. K. T. Kim, S. S. Kang, and S. C. Noh, "Absorbed Spectrum Comparison of Lead and Tungsten in Continuous X-ray Energy using Monte Carlo Simulation," J. Korean. Soc. Radiol, Vol.27, pp.483-487, 2012.
  9. H. J. Sung, Radiation Shielding Analysis according to the Material Making up the Transport Container of 99mTc Injectors Using GEANT4, Master's degree, Majoring in Radiation, Graduate School of Chonbuk National University, 2008.
  10. Y. H. Chung, C. H. Beak, and S. J. Lee, "Monte Carlo Simulation Codes for Nuclear Medicine Imaging," Nucl. Med. Mol. Imaging, Vol.42, No.2, pp.127-136, 2008.
  11. Richard E. Faw and J. Kenneth Shultis, "Radiological Assessment: Sources and Doses," Prentice Hall Pub. 1999.
  12. A. Carnicer, M. Ginjaume, and M. A. Duch, "The use of different types of thermoluminescent dosimeters to measure extremity doses in nuclear medicine," Radiat. Meas, Vol.46, No.12, pp.1835-1838, 2011. https://doi.org/10.1016/j.radmeas.2011.06.047
  13. C. H. Blunck, F. Becker, and M. Urban, "Simulation of Beta Radiator Handling Procedures in Nuclear Medicine by Means of a Movable Hand Phantom," Radiat. Prot. Dosim, Vol.144, No.1-4, pp.497-500, 2011. https://doi.org/10.1093/rpd/ncq329
  14. J. P. McCaffrey, E. Mainegra-Hing, and H. Shen, "Radiation attenuation by lead and nonlead materials used in radiation shielding garments," Med. Phys., Vol.34, No.2, pp.530-537, 2007. https://doi.org/10.1118/1.2426404
  15. J. P. McCaffrey, E. Mainegra-Hing, and H. Shen, "Optimizing non-Pb radiation shielding materials using bilayers," Med. Phys, Vol.36, No.12, pp.5586-5594, 2009. https://doi.org/10.1118/1.3260839
  16. S. C. Kim, K. T. Kim, and J. K. Park, "Barium Compounds through Monte Carlo Simulations Compare the Performance of Medical Radiation Shielding Analysis," J. Korean. Soc. Radiol. Vol.7, No.6, 2013.
  17. P. Ferrari, M. Sans-Merce, and A. Carnicer, "Main results of the monte carlo studies carried out for nuclear medicine practices within the ORAMED project," Radiat. Meas, Vol.46, No.11, pp.1287-1290, 2011. https://doi.org/10.1016/j.radmeas.2011.07.009
  18. F. Mariotti and G. Gualdrini, "Extremity dosimetry problems during the handling of radionuclides syringes in nuclear medicine: A Monte carlo radiation transport simplified approach," Radiat. Meas., Vol.46, pp.430-435, 2011. https://doi.org/10.1016/j.radmeas.2011.01.013