• 제목/요약/키워드: Leaching Test

검색결과 359건 처리시간 0.031초

폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율 (The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst)

  • 나우진;박해경
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.876-885
    • /
    • 2018
  • 폐 RHDM(Residue Hydrodemetallation) 촉매상에 침적된 비활성화 성분인 탄소, 황 을 고온배소 처리하여 제거한 후, 과량 침적되어 있는 바나듐은 초음파 교반기에서 5~15wt% 옥살산 수용액을 이용하여 $50^{\circ}C$, 5분 조건하에 바나듐 추출량을 조절함으로써 NOx 저감을 위한SCR(Selective Catalytic Reduction) 촉매로의 적용 가능성을 확인하고자 하였다. 폐촉매와 단계별 처리된 RHDM 촉매를 대상으로 상압반응기상에서 NOx 저감 효율을 측정하였고, 촉매의 성분분석은 ICP, C & S analyzer 및 XRF를 이용하여 분석하였다. 10wt% 옥살산 수용액으로 바나듐을 침출한 촉매가 가장 안정적이었으며 높은 NOx 저감 효율을 보였다. 이를 메탈폼 형태의 지지체에 워시코팅한 촉매는 상용 SCR 촉매와 동등 수준의 NOx 저감 효율을 나타내었다. 따라서 폐 RHDM 촉매의 처리 조건 조정에 관한 후속 연구를 통하여 각 적용처에 적합한 SCR 촉매로의 이용 가능성은 충분할 것으로 사료된다.

산업용 니켈-카드뮴 폐 이차전지 습식 재활용을 위한 전처리 및 산 침출에 대한 연구 (A Study on Pretreatment and Acid Leaching for Wet Recycling of Waste Industrial Ni-Cd Secondary Battery)

  • 정수훈;김대원;박일정;최중엽;양대훈;최희락
    • 자원리싸이클링
    • /
    • 제26권5호
    • /
    • pp.67-76
    • /
    • 2017
  • 산업용 폐 니켈-카드뮴 전지를 효율적으로 재활용하기 위하여 케이스에서 분리된 양극 및 음극 스크랩을 cut mill로 분쇄하여 분급하였으며, 철 성분 제거를 위하여 습식 자력선별법을 이용하였다. 또한 얻어진 양극 및 음극 분말을 습식법을 이용하기 위하여 다양한 조건에서의 산 침출 실험을 실시하였다. 최적 침출조건으로 2.0 M $H_2SO_4$, 반응온도 $90^{\circ}C$, 15 wt% $H_2O_2$, L/S=20의 조건에서 3시간 침출을 하여 유가금속인 니켈 및 카드뮴의 침출율을 99% 이상 얻을 수 있었다.

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Evaluation of Daphniamagna for the Ecotoxicity Assessment of Alkali Leachate from Concrete

  • Choi, Jae Bang;Bae, Sung Min;Shin, Tae Young;Ahn, Ki Yong;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제26권1호
    • /
    • pp.41-46
    • /
    • 2013
  • The cladoceran Daphniamagna has been used as an aquatic test species in aquatic toxicology. To evaluate the aquatic toxicity of leachate from concrete, the immobilization of D. magna was observed after treatment of various concentrations of leachate specimens. Reliabilities of the culture condition and the experimental protocol for acute toxicity test were successfully achieved from the standard toxicity test. The leachates were prepared from the mixture of Ordinary Portland Cement (OPC) and pozzolanic admixtures, Pulverised fuel ash (PFA), Ground granulated blast furnace slag (GGBS) and GGBS containing loess. Acute toxicity test showed 100% immobilization of D. magna for OPC or PFA. The leachates from OPC or PFA had high pH 10 to 12. However, GGBS and GGBS containing loess showed less toxicity according to the concentrations. Especially, immobilization was not observed at the concentrations below 12.5% of GGBS containing loess. Also the range of pH for these specimens was 8 to 9. This suggested that the use of loess as the admixture in concrete may be useful to reduce eco-toxicity of leachates from concrete. This our study provided the harmfulness of the alkali leaching from concrete in aquatic environment and the usefulness of D. magna to evaluate the toxicity of leachates from concrete.

왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가 (Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar)

  • 한경화;장용선;정강호;조희래;손연규
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

도시폐기물 소각로에서 발생되는 바닥재중의 금속류 유해특성에 관한 연구 (Hazardous Characteristics of metals in Bottom Ash from Municipal Solid Waste Combustors(MSWC) of Korea)

  • 정다위;김유능;윤영자;김연호
    • 분석과학
    • /
    • 제14권3호
    • /
    • pp.253-258
    • /
    • 2001
  • 본 연구에서는 우리나라 생활폐기물 대형소각시설(200톤/일 이상) 9개소에서 발생되는 소각재중, 바닥재에 대한 금속류의 용출시험 및 함량시험을 수행하여 유해특성과 유해잠재성을 고찰하였다. 용출시험은 우리나라 폐기물공정시험방법에 따라 수행하였으며, 함량시험은 수은(Hg)의 경우 열분해금아말감원자흡광분광기(TDA-AAS)로 측정하고, 납 등 9개 원소는 US-EPASW-846 3050B방법으로 전처리하고 불꽃원자흡광분광기(FAAS) 또는 유도결합플라스마원자발광분광기(ICP-AES)로 측정하였다. 용출시험 결과, 납과 구리가 주 오염물질이었다. 함량시험결과, 철이 가장 높은 농도로 나타났고 농도는 Fe>Zn>Cu>Mn>Pb>Cr>As>Cd>Hg 순으로 나타났으며, 각 소각시설마다 농도순이 평균적으로는 같았다.

  • PDF