• Title/Summary/Keyword: Leachability

Search Result 74, Processing Time 0.022 seconds

The Effect of Unleached Agents on the Stabilization/Solidification of Hazardous Sludge Containing Heavy Metals (有害슬러지 固形化에 따른 重金屬 溶出防止剖의 影饗)

  • 이성호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.46-54
    • /
    • 1993
  • This study was carried out on the stabilized/solidified treatment for the reducing leachability of hazardous heavy metals copper, lead, chromium and cadmium in the hazardous sludge which treated to be unleached heavy metals by sodium diethyl dithiocarbamate. Cement matrix was analyzed for the leachability of 24 hrs and dynamic leaching test, structure and the optimum condition for the stabilization and solidification of the hazardous sludge. In 28 days of curing time the unconfined compressive strength was 21.5 kg/cm$^2$ at the ratio of portland cement (0.5)+fly ash (0.25) and 23.5 kg/cmz at the ratio of portland cement (0.5)+fly ash (0.25) + cake (0.25). High concentration of Pb, Cr and Cd in the sea water and Cu in the distilled water were leached at the dynamic leaching test. The concentration of leaching heavy metals for specimens which were tested 24 hrs were found low leachability with decreasing pH of leachant. According to dynamic leaching test, the low level of copper, lead, cadmium and chromium were leached in the cement matrix with sodium diethyl dithiocarbamate. But the effective diffusion coefficient of unleached cement matrix which was treated sodium diethyl dithiocarbamate was decreased above 2 times than that of cement matrix. The relation of leachant renewal period (Y) and cumulative fraction ion leached (X) was the following regression equations. Solidification with unleached agent. Y$_{Cu}$ = 1413752X + 247, Y$_{Pb}$ = 223501IX + 214, Y$_{Cr}$ = 8310601X - 472, Y$_{Cd}$ = 168787X + 1061 The structure of' solidified matrix with X-ray diffraction analysis was composed more Ca(OH)$_2$, Si, Mg(OH)$_2$ and Al in the unleached cement matrix than those in cement matrix.

  • PDF

Extraction of Lithium from Lepidolite through Intensive Grinding with Calcium Sulfate Hemihydrate Followed by Water Leaching (고강도 혼합분쇄 처리에 의한 인운모로부터 리튬의 수 침출 특성)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • The concentrate of lepidolite, being treated by heavy medium separation (HMS), was ground with calcium sulphate hemihydrate (CSH, $CaSO_4{\cdot}1/2H_2O$) to investigate the mechanochemical effect for the Li leachability in water. This leachability increased, dramatically through the intensive grinding for the mixture, concentrate and CSH. The leachability of Li was improved from 4.48% to 93.5%. The grinding of the mixture destructed the crystal structure of the concentrate, and it might be formed to new compounds. As the result, Li in the concentrate can be extracted by water leaching at room temperature.

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.