DOI QR코드

DOI QR Code

Extraction of Lithium from Lepidolite through Intensive Grinding with Calcium Sulfate Hemihydrate Followed by Water Leaching

고강도 혼합분쇄 처리에 의한 인운모로부터 리튬의 수 침출 특성

  • Kim, Byoungjin (Dept. of Energy & Resources Engineering, Kangwon National University) ;
  • Kim, Suyun (Dept. of Energy & Resources Engineering, Kangwon National University) ;
  • Lee, Jaeryeong (Dept. of Energy & Resources Engineering, Kangwon National University)
  • 김병진 (강원대학교 자원에너지시스템공학과) ;
  • 김수윤 (강원대학교 자원에너지시스템공학과) ;
  • 이재령 (강원대학교 자원에너지시스템공학과)
  • Received : 2017.04.28
  • Accepted : 2017.06.05
  • Published : 2017.06.30

Abstract

The concentrate of lepidolite, being treated by heavy medium separation (HMS), was ground with calcium sulphate hemihydrate (CSH, $CaSO_4{\cdot}1/2H_2O$) to investigate the mechanochemical effect for the Li leachability in water. This leachability increased, dramatically through the intensive grinding for the mixture, concentrate and CSH. The leachability of Li was improved from 4.48% to 93.5%. The grinding of the mixture destructed the crystal structure of the concentrate, and it might be formed to new compounds. As the result, Li in the concentrate can be extracted by water leaching at room temperature.

중액선별(HMS, heavy medium separation)을 통해 회수된 인운모(lepidolite) 정광(Li: 2.3%)으로부터 리튬을 수 침출하기 위해 황산칼슘 반수화염(CSH, calcium sulfate hemihydrate, $CaSO_4{\cdot}1/2H_2O$)과 혼합분쇄하여 기계화학적 효과를 연구하였다. 인운모를 CSH와 함께 고강도 분쇄한 결과, 리튬의 침출율이 4.48%에서 93.5%로 급격히 증가하였다. 이는 고강도 혼합분쇄 과정 중 발생되는 기계화학적 효과로 인해 결정구조가 파괴되면서 인운모와 CSH의 혼합물이 새로운 화합물로 형성되어 나타난 결과로 판단된다. 결과적으로 인운모로부터 상온에서 리튬의 수 침출이 가능함을 확인하였다.

Keywords

References

  1. U. Chon, G. C. Han, K. Y. Kim and K. H. Kim, 2010 : Current Status of Lithium Resources, J. of Korean Inst. of Resources Recycling, 19(3), pp. 3-8.
  2. H. J. Ahn, J. W. Ahn, K. W. Lee and H. T. Son, 2014 : Recovery of Li from the Lithium Containing Waste Solution by D2EHPA, J. of Korean Inst. of Resources Recycling, 23(5), pp. 21-27. https://doi.org/10.7844/kirr.2014.23.5.21
  3. J. H. Choi, W. T. Kim, W. R. Chae, S. B. Kim and H. J. Kim, 2012 : Electrostatically Controlled Enrichment of Lepidolite via Flotation, Materials Transactions, 53(12), pp. 2191-2194. https://doi.org/10.2320/matertrans.M2012235
  4. Ebensperger, A., Maxwell, P. and Moscoso, C., 2005 : The lithium industry: Its recent evolution and future prospects, Resources Policy, 30, pp. 218-231. https://doi.org/10.1016/j.resourpol.2005.09.001
  5. Kesler, S. E., Gruber, P. W., Medina, P. A., Keoleian, G. A., Everson, M. P. and Wallington, T. J., 2012 : Global lithium resources: Relative importance of pegmatite, brine and other deposits, Ore Geology Reviews, 48, pp. 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006
  6. H. C. Jung, G. H. Kim, H. S. Hong and D. W. Kim, 2010 : Overview and future concerns for Lithium-Ion batteries materials, J. of Korean Powder Metallurgy Inst., 17(3), pp. 175-189. https://doi.org/10.4150/KPMI.2010.17.3.175
  7. Meshram, P., Pandey, B. D. and Mankhand, T. R., 2014 : Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy, 150, pp. 192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
  8. Hien-Dinh, T. T., Luong, V. T., Gieré, R., and Tran, T., 2015 : Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153, pp. 154-159. https://doi.org/10.1016/j.hydromet.2015.03.002
  9. K. H. Lee, H. S. Jeon, S. H. Baek and S. G. Kim, 2012 : Development of Flotation System for Utilization of Low Grade Lithium Ore, J. of the Mineralogical Society of Korea, 25, pp. 1-10. https://doi.org/10.9727/jmsk.2012.25.1.001
  10. Y. H. Jo, 2007 : Nano powder manufacturing technology using mechanochemical reaction method, J. of Ceramist., 10(1), pp. 7-14.