• Title/Summary/Keyword: Layout problem

Search Result 347, Processing Time 0.021 seconds

An Expert System and Genetic Algorithm for Facility Layout Problem

  • Limudomsuk, Thitipong;Sirinaovakul, Boonchareon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1654-1657
    • /
    • 2002
  • This paper presents a system for facility layout problem using an expert system and a genetic algorithm. The practical facility layout design can be effected by characteristics of constructing model, slicing tree model, closeness weight metric and expert system. The genetic algorithm searches the result layout. An experimental system is implemented and produced desired layout.

  • PDF

A Group Decision Model for Selecting Facility Layout Alternatives

  • Lin, Shui-Shun;Chiou, Wen-Chih;Lee, Ron-Hua;Perng, Chyung;Tsai, Jen-Teng
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.82-93
    • /
    • 2005
  • Facility layout problems (FLP) are usually treated as design problems. Lack of systematic and objective tools to compare design alternatives results in decision-making to be dominated by the experiences or preferences of designers or managers. To increase objectivity and effectiveness of decision-making in facility layout selections, a decision support model is necessary. We proposed a decision model, which regards the FLP as a multi-attribute decision making (MADM) problem. We identify sets of attributes crucial to layout selections, quantitative indices for attributes, and methods of ranking alternatives. For a requested facility layout design, many alternatives could be developed. The enormous alternatives, various attributes, and comparison of assigned qualitative values to each attribute, form a complicated decision problem. To treat facility layout selection problems as a MADM problem, we used the linear assignment method to rank before selecting those high ranks as candidates. We modelled the application of the Nemawashi process to simulate the group decision-making procedure and help efficiently achieve agreement. The electronics manufacturing service (EMS) industry has frequent and costly facility layout modifications. Our models are helpful to them. We use an electronics manufacturing service company to illustrate the decision-making process of our models.

A Study on the Layout Design of Ocean Space Submergible Boat by the Simulated Annealing Method (시뮬레이티드 어닐링법을 이용한 해저 탐사용 잠수정의 배치설계에 관한 연구)

  • Jang, Seung-Ho;Choi, Myung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.50-58
    • /
    • 2001
  • In this paper, a method to apply the simulated annealing method to three dimensional layout design problem which has multiple constraint conditions and evaluation criteria, was suggested. A program to support three dimensional layout design was developed according to the suggested method. This program was applied to the layout design of the wireless unmaned ocean space submergible boat. The layout result was improved 19.0% for the result of layout design expert. By this, it was verified that the suggested method has validity in supporting three dimensional layout design problem.

  • PDF

A Study on the Optimal Facility Layout Design Using an Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 최적 공간 배치 설계에 관한 연구)

  • 한성남;이규열;노명일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.174-183
    • /
    • 2001
  • This study proposes an improved genetic algorithm (GA) to derive solutions for facility layout problems having inner walls and passages. The proposed algorithm models the layout of facilities on a flour-segmented chromosome. Improved solutions are produced by employing genetic operations known as selection, crossover, inversion, mutation, and refinement of these genes for successive generations. All relationships between the facilities and passages are represented as an adjacency graph. The shortest path and distance between two facilities are calculated using Dijkstra's algorithm of graph theory. Comparative testing shows that the proposed algorithm performs better than other existing algorithm for the optimal facility layout design. Finally, the proposed algorithm is applied to ship compartment layout problems with the computational results compared to an actual ship compartment layout.

  • PDF

A Study on Facility Layout Planning Using Graph Theory (그래프 이론을 이용한 설비배치 계획에 관한 연구)

  • Kim, Jae-Gon;Lee, Geun-Cheol;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.359-370
    • /
    • 1997
  • We consider a facility layout problem with the objective of minimizing total transportation distance, which is the sum of rectilinear distances between facilities weighted by the frequency of trips between the facilities. It is assumed that facilities are required to have rectangular shapes and there is no empty space between the facilities in the layout. In this study, a graph theoretic heuristic is developed for the problem. In the heuristic, planar graphs are constructed to represent adjacencies between the facilities and then the graphs are converted to block layouts on a continual plane using a layout construction module. (Therefore, each graph corresponds to a layout.) An initial layout is obtained by constructing a maximal weighted planar graph and then the layout is improved by changing the planar graph. A simulated annealing algorithm is used to find a planar graph which gives the best layout. To show the performance of the proposed heuristic, computational experiments are done on randomly generated test problems and results are reported.

  • PDF

Interactive Control Panel Layout Using a Constraint Satisfaction Algorithm (제약만족 알고리즘을 이용한 상호대화적 조종패널 배치)

  • Park, Sung-Joon;Jeong, Eui-S.;Chang, Soo-Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.85-97
    • /
    • 1994
  • An interactive and iterative control panel layout method based on the constraint satisfaction problem (CSP) technique was developed to generate an ergonomically sound panel design. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constraints, and generate an optimal or, at least, a "satisfactory" solution through an efficient search algorithm. The problem of seeking an ergonomically sound panel design should be viewed as a multi-criteria design problem and most of the design objectives should be understood as constraints. Hence, a CSP technique was employed in this study for dealing with the multi-constraints layout problem. The efficient search algorithm using "preprocess" and "look_ahead" procedures was developed to handle vast amount of computation. In order to apply the CSP technique to the panel layout procedure, the ergonomic principles such as spatial compatibility, frequency-of-use, importance, functional grouping, and sequence-of-use were formalized as CSP terms. The effectiveness of the proposed panel layout method was evaluated by example problems and the results clearly showed that the generated layouts properly considered various ergonomic design principles.

  • PDF

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

Design of Manufacturing Cell and Cellular Layout based on Genetic Algorithm (유전 알고리듬에 기초한 제조셀과 셀 배치의 설계)

  • Cho, Kyu-Kab;Lee, Byung-Uk
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • This paper presents a concurrent design approach that deals with manufacturing cell formation and cellular layout in Cellular Manufacturing System. Manufacturing cell formation is to group machines into machine cells dedicated to manufacture of part families, and cellular layout problem determines layout of the manufacturing cells within shop and layout of the machines within a cell. In this paper, a concurrent approach for design of machine cell and cellular layout is developed considering manufacturing parameters such as alternative process plans, alternative machines, production volume and processing time of part, and cost per unit time of operation. A mathematical model which minimizes total cost consisting of machine installation cost, machine operating cost, and intercell and intracell movements cost of part is proposed. A hybrid method based on genetic algorithm is proposed to solve the manufacturing cell formation and cellular layout design problem concurrently. The performance of the hybrid method is examined on several problems.

  • PDF

Determination of New Layout in a Semiconductor Packaging Substrate Line using Simulation and AHP/DEA (시뮬레이션과 AHP/DEA를 이용한 반도체 부품 생산라인 개선안 결정)

  • Kim, Dong-Soo;Park, Chul-Soon;Moon, Dug-Hee
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.264-275
    • /
    • 2012
  • The process of semiconductor(IC Package) manufacturing usually includes lots of complex and sequential processes. Many kinds of equipments are installed with the mixed concept of serial and parallel manufacturing system. The business environments of the semiconductor industry have been changed frequently, because new technologies are developed continuously. It is the main reason of new investment plan and layout consideration. However, it is difficult to change the layout after installation, because the major equipments are expensive and difficult to move. Furthermore, it is usually a multiple-objective problem. Thus, new investment or layout change should be carefully considered when the production environments likewise product mix and production quantity are changed. This paper introduces a simulation case study of a Korean company that produces packaging substrates(especially lead frames) and requires multi-objective decision support. $QUEST^{(R)}$ is used for simulation modelling and AHP(Analytic Hierarchy Process) and DEA(Data Envelopment Analysis) are used for weighting of qualitative performance measures and solving multiple-objective layout problem, respectively.

AN IMPROVED COMBINATORIAL OPTIMIZATION ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT PROBLEM WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Wang, Jinzhi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.283-290
    • /
    • 2008
  • This paper is motivated by the problem of fitting a group of cuboids into a simplified rotating vessel of the artificial satellite. Here we introduce a combinatorial optimization model which reduces the three-dimensional layout problem with behavioral constraints to a finite enumeration scheme. Moreover, a global combinatorial optimization algorithm is described in detail, which is an improved graph-theoretic heuristic.

  • PDF