• Title/Summary/Keyword: Layered clay

Search Result 120, Processing Time 0.026 seconds

Studies on the Adsorptive Properties of Korean Kaolin(I) Physico-chemical Properties of Korean Kaolin (국산카올린의 흡착성에 관한 연구(I) 국산카올린의 물성)

  • 이계주;정필조
    • YAKHAK HOEJI
    • /
    • v.29 no.2
    • /
    • pp.96-102
    • /
    • 1985
  • Innovated utilization of Korean kaolins as pharmaceuticals is attempted, for which relevant properties including adsorptive behaviours are observed in connection with their mineralogical structures. In practice, physico-chemical properties are assessed by means of IR, XRD and thermal analysis including DTA, TG and DSC. Elemental analysis of the ore specimens under investigation is carried out in conventional manners. It is found that the chemical compositions are varied significantly with sampling sites and primary classifications. The clay ores thus analyzed are mainly composed of halloysite species. Proper benefication of the raw clays is necessary so that authentic requirements for medicinal use may be satisfied. White-colored premium grade halloysite could be utilized as therapeutics with relative ease after purification. Evidence indicates that gibbsite-like impurities are intercalated between the 1 : 1 layered moieties. Thermal behaviours may be characterized in such a fashion that loss of free water occurs near 100.deg. C and further heatings result in liberation of bound water near 500.deg. C, with subsequent transformation into amorphous metastable entities. Through thermal activation, enhanced pharmaceutical effects could be envisaged.

  • PDF

A Study of Iron Pot Casting and Bellows Technology (토제 거푸집 무쇠솥 주조와 불미기술 연구)

  • Yun, Yonghyun;Doh, Jungmann;Jeong, Yeongsang
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.4-23
    • /
    • 2020
  • The purpose of this study was to explore the diversity of Korea's iron casting technology and to examine various casting methods. The study involved a literature review, analysis of artifacts, local investigation of production tools and technology, and scientific analysis of casting and cast materials. Bellows technology, or Bulmi technology, is a form of iron casting technology that uses bellows to melt cast iron before the molten iron is poured into a clay cast. This technology, handed down only in Jeju Island, relies on use of a clay cast instead of the sand cast that is more common in mainland Korea. Casting methods for cast iron pots can be broadly divided into two: sand mold casting and porcelain casting. The former uses a sand cast made from mixing seokbire (clay mixed with soft stones), sand and clay, while the latter uses a clay cast, formed by mixing clay with rice straw and reed. The five steps in the sand mold casting method for iron pot are cast making, filling, melting iron into molten iron, pouring the molten iron into the cast mold, and refining the final product. The six steps in the porcelain clay casting method are cast making, cast firing, spreading jilmeok, melting iron into molten iron, pouring the molten iron, and refining the final product. The two casting methods differ in terms of materials, cast firing, and spreading of jilmeok. This study provided insight into Korea's unique iron casting technology by examining the scientific principles behind the materials and tools used in each stage of iron pot casting: collecting and kneading mud, producing a cast, biscuit firing, hwajeokmosal (building sand on the heated cast) and spreading jilmeok, drying and biyaljil (spreading jilmeok evenly on the cast), hapjang (combining two half-sized casts to make one complete cast), producing a smelting furnace, roasting twice, smelting, pouring molten iron into a cast, and refining the final product. Scientific analysis of the final product and materials involved in porcelain clay casting showed that the main components were mud and sand (SiO2, Al2O3, and Fe2O3). The release agent was found to be graphite, containing SiO2, Al2O3, Fe2O3, and K2O. The completed cast iron pot had the structure of white cast iron, comprised of cementite (Fe3C) and pearlite (a layered structure of ferrite and cementite).

Characterization of Layered Double Hydroxides(Mg-Al-$CO_3$ systems) and Rehydration Reaction of Their Calcined Products in Aqueous Chromate Solution (층상이중수산화물(Mg-Al-$CO_3$ 체계)의 물리 · 화학적 특성규명 및 소성된 시료의 크롬산이온 수용액에서 재수화반응)

  • Rhee, Seog Woo;Kang, Mun-Ja;Moon, Hichung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.627-634
    • /
    • 1995
  • Layered double hydroxides ($Mg-Al-CO_3$ systems, LDH), which are hydrotalcite-like anionic clay minerals, having different $Mg^{2+}\;to\;Al^{3+}$ ratio were synthesized by coprecipitation method. The subsequent products were characterized by the following methods; elemental analysis, X-ray powder diffraction, thermal analysis (DSC and TGA), FT-IR and $^{27}$Al-MAS NMR. X-ray powder patterns showed that the products formed were layered structure materials. Two heat absorption peaks were observed around 20 ∼280$^{\circ}C$ (surface water and interlayer water) and 280∼500$^{\circ}C$ (water from lattice hydroxide and carbon dioxide from interlayer carbonate) in DSC diagrams, and they were quantitatively analyzed by TGA diagrams (in case LDH4 16.2% and 28.6% respectively). FT-IR spectra indicate that the interlayer carbonate ions occupied symmetrical sites between two adjacent layers in a parallel direction. $^{27}$Al-MAS NMR spectra show only single resonance (8.6 ppm) of the octahedrally coordinated aluminum similar magnesium. When LDH4 was calcined at 560$^{\circ}C$ for 3 hours in air, its layered structure was destroyed giving a mixed metal oxide. However it readily became rehydrated in aqueous chromate solution to its original structure.

  • PDF

Utilization of Induced Polarization and Electrical Resistivity for Identifying Rock Condition (유도분극 전하 충전성과 전기비저항을 활용한 암반 상태 파악 가능성 연구)

  • Park, Jinho;Ryu, Jinwoo;Jung, Jeehee;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.493-502
    • /
    • 2016
  • This study examines how rock condition affects the variation of the chargeability and electrical resistivity of the rock. In the theoretical study, the relationship correlating chargeability with the variables affecting it is derived. A parametric study utilizing the derived relationship reveals that the size of narrow pores ($r_1$) is the most influential factor on chargeability, and the salinity of pore water ($C_0$) is the second. In the laboratory experiments, small scale rock fracturing zone is modelled using sand stone. Chargeability and resistivity are measured by changing the size of the joint aperture, the location of fractured zone and the existence of clay gouge and/or clay layer which shows lower chargeability than the sand stone layer in the multi-layered ground. Test results show that chargeability is controlled not by the rock fracturing condition but by the size of narrow pore ($r_1$) where each line of current flow passes through. Also, the chargeability decreases with increase of the pore water salinity ($C_0$). In conclusion, the ground condition can be identified more efficiently by measuring the induced polarization along with the electrical resistivity; identifying the existence of sea water, the layered ground and/or the fractured rock becomes more reliable.

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

Improvement of printability by the new designe of the multi-layered coating structure (II) - The effect of pigment blending in pre-coating layer on characteristics of top-coating layer - (다층도공층의 설계에 의한 인쇄적성 개선(제2보) - 프리코팅층의 안료배합이 탑코팅층의 특성에 미치는 영향 -)

  • Kim, Sun-Kyung;Won, Jong Myoung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • This study was carried out in order to investigate the effect of pigment properties in a pre-coating layer on the characteristics of a top-coating layer and the print mottle of the coated paper. Five different pigments were applied for this study as raw materials for the pre-coating layer. The properties and print mottle of the coated paper samples were evaluated according to the coating color formulation. Type of pigments appliied in a pre-coating layer was one of the most important factor to control the properties of pre and top coating layer. Surface properties of pre and top coated paper were improved by blending GCC which had smaller particle size, with clay. Properties of a top-coating layer was affected by the pigment properties used in the pre-coating layer. It was found that print mottle of coated paper can be improved by replacing part of GCC with smaller particle size GCC or clay in pre-coating layer.

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation (미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선)

  • Kim, Hyoung-Jun;Oh, Jae-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2016
  • Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

Experimental study on the performance of compensation grouting in structured soil

  • Zheng, Gang;Zhang, Xiaoshuang;Diao, Yu;Lei, Huayang
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.335-355
    • /
    • 2016
  • Most laboratory test research has focused on grouting efficiency in homogeneous reconstituted soft clay. However, the natural sedimentary soils generally behave differently from reconstituted soils due to the effect of soil structure. A series of laboratory grouting tests were conducted to research the effect of soil structure on the performance of compensation grouting. The effects of grouting volume, overlying load and grouting location on the performance of compensation grouting under different soil structures were also studied. Reconstituted soil was altered with added cement to simulate artificial structured soil. The results showed that the final grouting efficiency was positive and significantly increased with the increase of stress ratio within a certain range when grouting in normally consolidated structured clay. However, in the same low yield stress situation, the artificial structured soil had a lower final grouting efficiency than the overconsolidated reconstituted soil. The larger of normalized grouting volume could increase the final grouting efficiency for both reconstituted and artificial structured soils. Whereas, the effect of the overlying load on final grouting efficiencies was unfavourable, and was independent of the stress ratio. As for the layered soil specimens, grouting in the artificial structured soil layer was the most efficient. In addition, the peak grouting pressure was affected by the stress ratio and the overlying load, and it could be predicted with an empirical equation when the overlying load was less than the yield stress. The end time of primary consolidation and the proportion of secondary consolidation settlement varied with the different soil structures, grouting volumes, overlying loads and grouting locations.

A Study on the Mechanical Properties of Organo-clay Filled NR/MMT Nanocomposites (Organo-Clay를 이용한 NR/MMT 나노복합체의 기계적 물성에 관한 연구)

  • Oh, Woo-Taek;Lee, Eun-Kyoung;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.455-465
    • /
    • 2009
  • In this study, Organo-montmorillonite(MMT) was synthesized by intercalation of various amine(Octylamine, Dodecylamine, Dimethyldodecylamine, Octadecylamine) compounds into layered silicate. Natural Rubber(NR)/MMT nanocomposites were prepared by reinforcement of Organo-MMT. X-ray diffraction(XRD) and Scanning electron microscope(SEM) were employed to characterize the layer distance of Organo-MMT and the morphology of the NR/MMT nanocomposites. The structures of the synthesized Organo-MMTs were analyzed by the measurement of FT-IR. Cure characteristics, surface free energy and mechanical properties such as tensile strength, modulus and hardness of NR/MMT nanocomposites were carefully studied by contact angle meter, ODR, UTM, and hardness tester. FT-IR analysis showed a insertion of the alkyl and amine chains into the interlayers of the MMT. It was shown that the cure time of the organo-MMT was more decreased than that of $Na^+$-MMT. Surface free energy and tensile strength of the NR/DDA-MMT nanocomposite were the highest. NR/ODA-MMT nanocomposite was the highest in hardness.

Effect of water jetting parameters on the penetration behavior of jack-up spudcan in surficial sand condition

  • Han, Dong-Seop;Kim, Seung-Jun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The water jetting system for a jack-up spudcan requires the suitable design considering the platform/spudcan particulars, environments, and soil conditions, either the surficial clay or surficial sand. The usage of water jetting depends critically on soil conditions. The water jetting is usually used for the smooth and fast extraction of the spudcan in the surficial clay condition. It is also required for inserting spudcan up to the required depth in the surficial sand condition, which is investigated in this paper. Especially, it should be very careful to use the water jetting during an installation of spudcan in the surficial sand condition, because there is a risk of overturning accident related to the punch-through. Therefore, in this study, the effect of water jetting flow rate and time on the change of soil properties and penetration resistance is analyzed to better understand their interactions and correlations when inserting the spudcan with water jetting in surficial sand condition. For the investigation, a wind turbine installation jack-up rig (WTIJ) is selected as the target platform and the multi layered soil (surficial sand overlaying clays) is considered as the soil condition. The environmental loading and soil-structure interaction (SSI) analysis are performed by using CHARM3D and ANSYS. This kind of investigation and simulation is needed to decide the proper water jetting flow rate and time of spudcan for the given design condition.