• 제목/요약/키워드: Layer height

검색결과 1,047건 처리시간 0.031초

건물화재시 연기층 형성과 영역모델에 관한 연구 (A Study on the Formation of Smoke Layer and the Zone modelling in Compartment Fire)

  • 허만성
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.70-78
    • /
    • 1997
  • The objective of this research is to study on the upper and lower layer temperature, interface height and pressure in case of carpet, chair, trashcan and wardrobe fires in a residential room by performing the theoretical and experimental studies. The theoretical results of the upper and lower layer temperature, the interface height and the pressure were qualitatively well coincided with the experimental results. The uniformly distributed fire in case of carpet showed that the ignition and the initial growth period were relatively short while the fully developed period was considerably long. The concentrated fires such as the wardrobe showed that the ignitions and the initial growth periods were relatively long. The interface heights were around 1m as the steady state. However, at the time of the maximum temperature, the interface height was lowered to 0.5m from the floor. The pressure variation in the fire room ranged between 0.1mmAq and 0.4mmAq, and the temperature reached the highest while the pressure was maximum.

  • PDF

대기 혼합층 발달 과정의 모형 실험과 수치 해석 (Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer)

  • 이화운
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.419-433
    • /
    • 2013
  • This paper investigates the vertical profiles of horizontal mean wind speed and direction based on the synchronized measurements from a Doppler radar profiler and an anemometer during 16 tropical cyclones at a coastal site in Hong Kong. The speed profiles with both open sea and hilly exposures were found to follow the log-law below a height of 500 m. Above this height, there was an additional wind speed shear in the profile for hilly upwind terrain. The fitting parameters with both the power-law and the log-law varied with wind strength. The direction profiles were also sensitive to local terrain setups and surrounding topographic features. For a uniform open sea terrain, wind direction veered logarithmically with height from the surface level up to the free atmospheric altitude of about 1200 m. The accumulated veering angle within the whole boundary layer was observed to be $30^{\circ}$. Mean wind direction under other terrain conditions also increased logarithmically with height above 500 m with a trend of rougher exposures corresponding to lager veering angles. A number of empirical parameters for engineering applications were presented, including the speed adjustment factors, power exponents of speed profiles, and veering angle, etc. The objective of this study aims to provide useful information on boundary layer wind characteristics for wind-resistant design of high-rise structures in coastal areas.

방풍펜스가 후방에 놓인 야적모래입자의 비산에 미치는 영향에 관한 연구 (Shelter Effect of Porous Fences on the Saltation of Sand Particles in an Atmospheric Boundary Layer)

  • 박기철;이상준
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1175-1184
    • /
    • 2000
  • Effects of porous wind fences on the wind erosion of particles from a triangular sand pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Flow visualization was carried out to investigate the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the particle size, fence porosity $\varepsilon$ and the height of sand pile. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity $\varepsilon$=30% was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles. With increasing the sand particle diamter, the threshold velocity was also increased. When the height of sand pile is lower than the fence height, threshold velocity is enhanced.

초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성) (Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics))

  • 홍종우
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

버퍼층과 음전극에 따른 유기 발광 소자의 전기적 특성과 발광 효율 (Electrical Properties and Luminous Efficiency in Organic Light-Emitting Diodes Depending on Buffer Layer and Cathodes)

  • 정동회;김상걸;홍진웅;이준웅;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.409-417
    • /
    • 2003
  • We have studied electrical properties and luminous efficiency of organic light-emitting diodes(OLEDs) with different buffer layer and cathodes in a temperature range of 10 K and 300 K. Four different device structures were made. The OLEDs are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris(8-hydroxyquinolinato) aluminum(III) (Alq$_3$) as an electron transport and omissive layer, and poly(3,4-ethylenedioxythiophene) :poly (styrenesulfonate) (PEDOT:PSS ) as a buffer layer. And LiAl was used as a cathode. Among the devices, the ITO/PEDOT:PSS/TPD/Alq$_3$/LiAl structure has a low energy-barrier height for charge injection and show a good luminous efficiency. We have got a highly efficient and low-voltage operating device using the conductive PEDOT:PSS and low work-function LiAl. From current-voltage characteristics with temperature variation, conduction mechanisms are explained SCLC (space charge limited current) and tunneling one. We have also studied energy barrier height and luminous efficiency at various temperature.

FDM 3D Printing 적층조건에 따른 기계적 물성의 연구 (A study of mechanical properties with FDM 3D printing layer conditions)

  • 김범준;이태흥;손일선
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

불균일계에서의 초음파 캐비테이션 물리적 및 화학적 효과 연구 (Sonochemial and Sonophysical Effects in Heterogeneous Systems)

  • 이덕영;손영규
    • 한국물환경학회지
    • /
    • 제35권2호
    • /
    • pp.115-122
    • /
    • 2019
  • The objective of this study was to investigate the sonophysical and sonochemical effects induced by acoustic cavitation in heterogeneous systemin a 28 kHz double-bath reactor using calorimetry, the aluminiumfoil erosion test, and the luminol test. With no glass beads, calorimetric power in the inner vessel increased as much as the outer sonoreactor lost and total calorimetric power was maintained for various liquid height conditions (0.5 ~ 7 cm) in the vessel. Higher calorimetric energy was obtained at higher liquid height conditions. Similar results were obtained when glass beads were placed with various beads heights (0.5 ~ 2.0 cm) and relatively high calorimetric energy was obtained in spite of large attenuation in the glass beads layer. An aluminium foil placed between the bottom of the inner vessel and the glass beads layer was damaged, indicating significant sonophysical effects. Much less damage was detected when the foil was placed above the beads layer due to large attenuation of ultrasound. Sonochemical effects, visualized by sonochemiluminescence (SCL), also decreased significantly when the beads were placed in the vessel. It was established that the optimization of the liquid height above the solid-material layer could enhance the sonophysical and sonochemical effects in the double-bath sonoreactors.

제진 강판의 블랭킹 가공 특성에 관한 연구 (A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal)

  • 이광복;이용길;김종호
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.724-729
    • /
    • 2003
  • In order to study the shearing characteristic of anti-vibration sheet metal which is used to reduce vibration noise, a blanking die was manufactured to blank a workpiece. The variables employed in this study were clearance, type of stripper plate, position of the rubber layer and type of the die design. These variables were used to study the effects on burr height, blank diameter and camber height. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, showed greater burr height. The rubber-top position of a workpiece resulted in better qualities regardless of working variables. In the comparison of diameter measurement, the use of the push-back die with a fixed stripper plate, with a 4.5% clearance, showed better accuracy. For comparing camber height, the push-back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber layer is laying on the top, blanked with a fixed stripper plate in a push-back die, with a 4.5% clearance.

Prediction of Significant Wave Height in Korea Strait Using Machine Learning

  • Park, Sung Boo;Shin, Seong Yun;Jung, Kwang Hyo;Lee, Byung Gook
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.336-346
    • /
    • 2021
  • The prediction of wave conditions is crucial in the field of marine and ocean engineering. Hence, this study aims to predict the significant wave height through machine learning (ML), a soft computing method. The adopted metocean data, collected from 2012 to 2020, were obtained from the Korea Institute of Ocean Science and Technology. We adopted the feedforward neural network (FNN) and long-short term memory (LSTM) models to predict significant wave height. Input parameters for the input layer were selected by Pearson correlation coefficients. To obtain the optimized hyperparameter, we conducted a sensitivity study on the window size, node, layer, and activation function. Finally, the significant wave height was predicted using the FNN and LSTM models, by varying the three input parameters and three window sizes. Accordingly, FNN (W48) (i.e., FNN with window size 48) and LSTM (W48) (i.e., LSTM with window size 48) were superior outcomes. The most suitable model for predicting the significant wave height was FNN(W48) owing to its accuracy and calculation time. If the metocean data were further accumulated, the accuracy of the ML model would have improved, and it will be beneficial to predict added resistance by waves when conducting a sea trial test.