• Title/Summary/Keyword: Launder

Search Result 55, Processing Time 0.023 seconds

Water Repellent Finish for Divided Type PET/Nylon Fabrics with Fluoro Alkyl Resin (불소수지를 이용한 분할형 PET/nylon 직물의 발수가공)

  • Lee, Bang One;Pak, Pyong Ki;Cheong, Yun Suk;Lee, Hwa Sun
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • Water repellent finish was carried out using water repellent agent(AG-480), melamine resin(Sumitex Resin MK), and catalyst(Sumitex Accelerator ACX). PET/nylon fabrics were treated with melamine resin by pad-dry-cure method and subsequently washed and dried. Durable water repellency was controlled by the melamine resin and catalyst. Water repellency was tested by spray rating method and durability of water repellency were measured by launder-O-meter and pilling tester. The optimum conditions of durable water repellent finish for new synthetic fabric were as follows; concentration of water repellent finishing agent 20g/l; concentration of melamine & catalyst 0.5g/l; curing condition $160^{\circ}$ ${\times}$ 30sec. Water repellency after washing and rubbing is improved by melamine resin and catalyst.

  • PDF

Colloidal Silver Treatment of Cotton Fabrics after Washing to Impart Antimicorbial Activity (항균성을 부여하기 위한 세탁과정에서의 은콜로이드 용액 처리)

  • 정혜원;김현숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1312-1319
    • /
    • 2004
  • Underwear is laundered frequently and most of them is made of cotton, but a cotton fiber is more difficult to modify than a synthetic fiber. We have attempted to determine the optimum conditions necessary whereby the lowest concentration of silver solution is needed to produce the greatest antimicrobial properties of cotton fabrics. For this study, colloidal silver was made by electrolysis. The concentration of colloidal silver was increased by increasing the area of the silver plates submerged in the water, the water temperature, the water hardness and the flow time of the water per 1l. However, the colloidal silver concentration was decreased by extending a space between the silver plates and increasing the water velocity. Cotton fabrics treated in the washing machine with 1.3 ppm colloidal silver solution for 10 minutes had effective microbial properties and an unperceivable reduction of reflectance.

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(II) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(II) -돌출열원이 있는 경우의 유동 및 열전달 특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.66-72
    • /
    • 1995
  • A numerical study for a two dimensional multi-impingement jet with crossflow of the spent fluid has been carried out. To study the flow characteristics especially in the jet flow region, three different distributions of mass flow rate at 5-jet exits were assumed. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) A periodical fully developed flow was observed from the third protrusion. This was also observed from previous experimentally by Whidden at al. The Nessult number at the protrusion surface increased mildly as going downstream. 2) The low Reynolds number turbulence model of Launder and Sharma was found to be adequate for the prediction of fluid flow and heat transfer characteristics of two dimensional multi-jet configuration. 3) The Nusselt number at the protrusion surface was nearly proportional to the square root of the Reynolds number.

  • PDF

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

Comparison of Two-Equation Model and Reynolds Stress Models with Experimental Data for the Three-Dimensional Turbulent Boundary Layer in a 30 Degree Bend

  • Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2000
  • The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.

  • PDF

Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel (3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성)

  • Lee, J.H.;Park, K.W.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF

Prediction of Turbulent Flow Over L-Shaped Riblet Surfaces with $k-\varepsilon$ Turbulence Models ($k-\varepsilon$ 난류모델에 의한 L-형 리브렛 주위 난류유동 예측)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.93-103
    • /
    • 1998
  • The paper reports the outcome of a numerical study of flow over idealized L-shaped ribleted surfaces with two-equation turbulence models. In the present study, the Launder and Sharma's k-.epsilon. turbulence model (LS model) is basically N employed, but with a little modification of the additional .epsilon.-source term without affecting its level under 2-dimensional straining in which the term has been calibrated. Compared to the original LS model, the present model has predicted greatly improved drag reduction behavior for this geometry. As a drag reduction mechanism, it is found that the skin-friction in the riblet valleys might be sufficient to overcome the skin-friction increase near the riblet tip. The present predicted results are in good agreement with the recent DN S ones by Choi et al. (1993): differences in the mean velocity prof ile and turbulence quantities are found to be limited to the riblet cavity region. It is also found that turbulent kinetic energy and Reynolds shear stress above the riblets are also reduced in drag-reducing configurations.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow- (정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II))

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.