• Title/Summary/Keyword: Launching characteristics

Search Result 112, Processing Time 0.023 seconds

A Development of the Simulation Program for Launching Performance of a Passenger Car equipped Continuously Variable Transmission (무단변속기 장착차량의 발진성능 해석을 위한 시뮬레이션 프로그램의 개발)

  • 김정윤;이장무;여인욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.157-166
    • /
    • 1999
  • This paper describes the launching characteristics of a passenger car using a Push-Belt type Continuously Variable Transmission(CVT) which equipped a wet type multi-plate clutch asa starting device and a solid flywheel with a torsional damper for a torsional coupling device. To reduce the torsional vibration of the drive-line , some torsional coupling devices were used for the passenger car equipped CVT having the clutch as a starting device especially . In this study, we developed the computer simulation program to investigate the launching characteristics of a passenger car equipped CVT using the mathematical models of this system. For the mathematical models of the vehicle, the CVT, the we type multi-plate clutch and the torsional damper, we obtained the specification and the necessary data through the reverse engineering of those. For the verification of our analysis, we performed the test of prototype car with different throttle positions at road and dynamometer. The launching characteristics of a passenger car considered here an acceleration performance and an ascending performance.

  • PDF

Analytical Approach of Sliding Installation Method with Spar Structure

  • Lee, Jong-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2011
  • It is important to understand the trajectory of structure in launching process because of the short time of launching process may result in unexpected accidents or damage to structures. The high risk of structural failure is not avoidable without the fully comprehension of changing forces in launching procedure. The commercial software can evaluate the motion of launching event in calm water condition but there is the limitation of research application because of the programmed commercial software. The launching process of the spar hull is suggested with stage concept that is divided into 10 stages in time domain. A force equilibrium diagram is derived for each stage where the changes of force vector and motion characteristics take place. In particular, the effects of changes in buoyancy and drag force due to the progressive submergence of the spar hull are taken into account by means of a touch length concept. The results contained in this paper provide the valuable information of the trajectory motion evaluation with suggested methods in spar launching process with sliding barge. Furthermore, the presented stage concept and touch length concept will provide basic knowledge for understanding launching process and help to develop further research area for launching analysis.

Path Loss Characterization in Tunnel Using Ray Launching Method at 2.6 GHz (Ray-Launching 기법을 이용한 2.6 GHz 대역의 터널 내 경로손실 특성 분석)

  • Kim, Do-Youn;Jo, Han-Shin;Yook, Jong-Gwan;Park, Han-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.33-37
    • /
    • 2003
  • This paper presents the characteristics of large-scale fading in a tunnel environment. The Ray-Launching Method has been used to analyze the characteristics of the tunnel. For a curved tunnel, The concept of RDN (Ray Density Normalization) is introduced in order to obtain more accurate results. For our purposes, the structure of tunnel is assumed to be either a straight or curved tunnel having rectangular cross-section. A large scale fading has been presented shown in several tunnel cases.

  • PDF

An Analysis of the Effect of R&D Characteristics of Firms on R&D Performance (연구개발 특성이 기업 연구 성과에 미치는 영향 분석 - 국제화된 한국 중소기업을 중심으로 -)

  • Kim, Han-Joo;Hwang, Yun-Seop
    • International Commerce and Information Review
    • /
    • v.9 no.4
    • /
    • pp.395-413
    • /
    • 2007
  • The main purpose of this study is to analyze the relationships between the R&D characteristics and R&D performance for Korean enterprises. We divided R&D performance into technological and business launching performance and analyzed four R&D characteristics' effect on the performance. The empirical analysis results can be summarized as follows: First, R&D characteristics of enterprises show a strong relationship with R&D performance in the case of R&D process control. Second, firm capability and information routine positively affect to technological performance at 0.1 significant level but not showing significance in the case of business launching performance. Third, managerial support negatively affects to technological performance but dose not show statistical significance. Its effect on business launching performance, however, shows positive and significant effect. This result is expected to be highly suggestive for establishing the effective R&D strategies of enterprises and also the relevant overseas marketing plan to support R&D planning.

  • PDF

Launching Simulation of Integrated Mining System for Deep-Seabed Mineral Resources (심해저 광물자원 채광시스템의 설치 거동 해석)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.315-318
    • /
    • 2006
  • This paper concerns about coupled dynamic analysis of the deep-seabed mining system in launching operation. The dynamic behavior of mining system consisting of lifting pipe, buffer station, flexible conduit and self-propelled miner is simulated in time domain. The launching operation is divided into four critical phases: (1) deployment of miner and flexible conduit, (2) deployment of lifting pipe, flexible conduit and miner, (3) touch-down of miner, (4) final launching. The dynamic responses of sub-systems - miner, flexible conduit, buffer and lifting pipe - are analyzed in each launching phase. According to the changing periods of forced excitation at the top, the dynamic responses of sub-systems are diverse in their characteristics. It has been shown that the total integrated responses of sub-systems are strongly affected by the design parameters. Especially, the principal dimensions of flexible conduit seem to be significant in determining of the global response. Based on the simulation results, safe operation conditions are investigated.

  • PDF

Design Study on the Flow Characteristics of a Gas Management System for a Vertical Launching System (함정 수직발사대 화염처리장치 형상에 따른 유동특성 연구)

  • Yang, Young-Rok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.712-717
    • /
    • 2013
  • The gas management system for a vertical launching system must be safely managed within a ship. The plenum and uptake are capable of containing and surviving a full-burning restrained firing without loss of gas management integrity. To secure the safety, the pressure characteristics with a supersonic under-expanded jet on a gas management system are numerically investigated using computational fluid dynamics. The results of present analysis and the preliminary design of the gas management system are described in this paper.

Simplified Analysis Formula for the Interaction of the Launching Nose and the Superstructure of ILM Bridge (압출추진코와 ILM 교량 상부구조 상호작용 해석식의 단순화)

  • Lee, Hwan-Woo;Jang, Jae-Youp
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.245-258
    • /
    • 2012
  • ILM(incremental launching method) is a way of construction, installing a girder producing spot behind the abutment, making the bridge girder infilled with concrete continuously and launching with using by jack. The superstructure of the bridge constructed by this method is temporarily located on the center of the span and the supporting points under construction. Therefore, the sections are structurally undergone maximum positive moment, maximum negative moment, and maximum shear force arising from self weight. On the other hand, launching nose is attached to the front of the girder to decrease the cantilever effect. The magnitude of this temporary stress creating on the upper section is dependent upon the launching nose's characteristics. This study has proposed an analysis formula simplified on the assumption that the launching nose section is a quasi-equivalent section(rigid; equivalent section, weight; tapered section) in order to ensure the accuracy of the analysis formula and improve its usage with reference to the interaction between the launching nose and the upper section; and a prismatic analysis formula modified by displacing a diaphragm's weight by a concentrated load in order to improve the accuracy of the existing analysis formula that assumes the launching nose section as the equivalent section. To judge the accuracy and usage of two analysis formulas proposed, we have compared and analyzed computational structural analysis programs and existing analysis formulas based on actual ILM bridge data. As a result, all of two reveal the superior accuracy and also their usage has been improved by the simplification of analysis formulas.

Interaction Analysis between Tapered Sectional Launching Nose and Superstructure Section of ILM Concrete Bridge (변단면 압출추진코와 ILM 교량 상부단면의 상호작용 해석)

  • Lee Hwan-Woo;Jung Du-Hwoe;Ahn Tae-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.139-150
    • /
    • 2006
  • ILM(incremental launching method) bridge is one of the prestressed concrete bridge construction methods widely adopted owing to its effectiveness for the quality control. The sections of the launched superstructure pass every position of the bridge spans. This launching process causes the bridge sections to be experienced in the quite different stress states with the stress state occurred after construction completely. Due to the self weight of sections, particularly, the superstructure sections(deck) experience maximum positive and negative moment as well as maximum shear force during launching process. To minimize the temporarily caused sectional forces, launching nose is generally used in the construction method. Therefore, the magnitude of this sectional forces should be checked for the safety of super structure in construction and it is dependent on the structural characteristics of launching nose. In this study, the simplified formulas to analyze the sectional force occurred by the nose-deck interaction in ILM construction are developed. The considering parameters are the span length ratio, stiffness ratio and weight ratio between the launching nose and the super structure. In particular, the developed formulas can consider the tapered sectional shape of launching nose and the diaphragm wall in the superstructure. Additionally, the sensitivity analysis is performed to analyze the effects of nose-deck interaction according to the design parameters.

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

Bit Error Rate Dependence on Amplifier Spacing in Long-Haul Optical Transmission System with Mid-Span Spectral Inversion (Mid-Span Spectral Inversion 기법을 채택한 장거리 광 전송 시스템에서의 증폭기 간격에 따른 비트 에러율)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2005
  • In this paper, bit error rate (BER) characteristics, sensitivity and minimum allowable launching power are numerically investigated as a function of amplifier spacing that consisted of 1,200 km WDM systems with MSSI method. It is conformed that the sensitivity and minimum allowable launching power are gradually degraded as amplifier spacings are gradually expanded, but those are not largely affected by modulation format. The sensitivity of RZ transmission system is smaller than that of NRZ transmission system, but minimum allowable launching power of NRZ transmission system is smaller than that of RZ transmission system. And, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is less than 50 km, because the sensitivity and minimum allowable launching power are less affected by fiber dispersion, channel wavelength and pump light power.

  • PDF