• Title/Summary/Keyword: Lattice space

Search Result 260, Processing Time 0.032 seconds

ON OPERATOR INTERPOLATION PROBLEMS

  • Jo, Young-Soo;Kang, Joo-Ho;Kim, Ki-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.423-433
    • /
    • 2004
  • In this paper we obtained the following: Let H. be a Hilbert space and (equation omitted) be a subspace lattice on H. Let X and Y be operators acting on H. If the range of X is dense in H, then the following are equivalent: (1) there exists an operator A in Alg(equation omitted) such that AX = Y, (2) sup (equation omitted) Moreover, if condition (2) holds, we may choose the operator A such that ∥A∥ = K.

Electric conduction and breakdown of organic insulator (유기절연물의 전기전도와 절연파괴)

  • 성영권
    • 전기의세계
    • /
    • v.16 no.4
    • /
    • pp.11-16
    • /
    • 1967
  • A physical analysis is applied to the measured phenomena of aromatic organic compounds under the uniform electric field of 0.1MV/cm through 1.5MV/cm, when they are irradiated or non-irradiated respectively. Upon the observations about irradiation effects, space charge effects and their temperature dependance, the conditions of lattice defects act conspicuously on electric conductrivity, photo conductivity and dielectric breakdown. Although the qualitative agreement with Frohlich's high energy criterion theory for the above mechanisms is poor, it is concluded that the phenomena of aromatic compounds may possibly be due to the effect of lattice defects or impurity centers generated by .gamma.-ray irradiations.

  • PDF

INTERPOLATION PROBLEMS IN ALGL

  • JO YOUNG SOO;KANG JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.513-524
    • /
    • 2005
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. Let L be a subspace lattice on H. We obtained a necessary and sufficient condition for the existence of an interpolating operator A which is in AlgL.

Introduction to the quality evaluation of lattice girder using nondestructive test (비파괴법을 활용한 격자지보의 성능평가 기법 제안)

  • Jung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.431-439
    • /
    • 2016
  • This paper dealt with contents of the quality evaluation method of lattice girder utilizing non-destructive method. Quality evaluation of ordinary lattice girder is performed through the tensile strength test of structural steel and visual inspection. The tensile strength test of structural steel is performed by collecting samples of lattice girder brought into the site, during which lattice girder must be damaged to obtain sample. In addition to such disadvantage, tensile strength tester is not available at the site in most cases, requiring an inconvenient service from test certification agency. In addition, it is substituted by mile sheet issued during the production of structural steel, which inevitably lacks reliability. Furthermore, visual inspection at the site entails a problem of lack of reliability, thereby requiring a method of easily and quickly evaluating the quality of lattice girder without damaging the material. Accordingly, this study comparatively analyzed the yield strength of tensile strength test and the yield strength of instrumented indentation test with same sample. The test results ensured over 95% precision level for the instrumented indentation test, based on which a quality evaluation method based on instrumented indentation test that allowed onsite direct quality evaluation is proposed.

INTERPOLATION PROBLEMS FOR OPERATORS WITH CORANK IN ALG L

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.409-422
    • /
    • 2012
  • Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. And let X and Y be operators acting on a Hilbert space $\mathcal{H}$. Let $sp(x)=\{{\alpha}x\;:\;{\alpha}{\in}\mathcal{C}\}$ $x{\in}\mathcal{H}$. Assume that $\mathcal{H}=\overline{range\;X}{\oplus}sp(h)$ for some $h{\in}\mathcal{H}$ and < $h$, $E^{\bot}Xf$ >= 0 for each $f{\in}\mathcal{H}$ and $E{\in}\mathcal{L}$. Then there exists an operator A in Alg$\mathcal{L}$ such that AX = Y if and only if $sup\{\frac{{\parallel}E^{\bot}Yf{\parallel}}{{\parallel}E^{\bot}Yf{\parallel}}\;:\;f{\in}H,\;E{\in}\mathcal{L}\}$ = K < ${\infty}$. Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}||A{\parallel}=K$.

SKEW-ADJOINT INTERPOLATION ON Ax-y IN $ALG\mathcal{L}$

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$, be the projection onto sp(x). If $P_xE=EP_x$ for each $ E \in \cal{L}$ then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in ($sp(x)^\perp$) and $A=-A^\ast$. (2) (equation omitted)

  • PDF

Advanced 1D Structural Models for Flutter Analysis of Lifting Surfaces

  • Petrolo, Marco
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • An advanced aeroelastic formulation for flutter analyses is presented in this paper. Refined 1D structural models were coupled with the doublet lattice method, and the g-method was used for flutter analyses. Structural models were developed in the framework of the Carrera Unified Formulation (CUF). Higher-order 1D structural models were obtained by using Taylor-like expansions of the cross-section displacement field of the structure. The order (N) of the expansion was considered as a free parameter since it can be arbitrarily chosen as an input of the analysis. Convergence studies on the order of the structural model can be straightforwardly conducted in order to establish the proper 1D structural model for a given problem. Flutter analyses were conducted on several wing configurations and the results were compared to those from literature. Results show the enhanced capabilities of CUF 1D in dealing with the flutter analysis of typical wing structures with high accuracy and low computational costs.

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

A Real-Space Band-Structure Calculation of 2D Photonic Crystals (2 차원 광결정의 실공간 밴드구조 계산)

  • Jun, Suk-Ky;Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1089-1093
    • /
    • 2003
  • The moving least square (MLS) basis is implemented for the real-space band-structure calculation of 2D photonic crystals. The value-periodic MLS shape function is thus used in order to represent the periodicity of crystal lattice. Any periodic function can properly be reproduced using this shape function. Matrix eigenequations, derived from the macroscopic Maxwell equations, are then solved to obtain photonic band structures. Through numerical examples of several lattice structures, the MLS-based method is proved to be a promising scheme for predicting band gaps of photonic crystals.

  • PDF

INVERTIBLE INTERPOLATION ON AX = Y IN ALGL

  • Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for i = 1,2,...,n. In this article, we showed the following: Let L, be a subspace lattice on a Hilbert space H and let X and Y be operators in B(H). Then the following are equivalent: (1) $$sup\{\frac{{\parallel}E^{\bot}Yf{\parallel}}{{\overline}{\parallel}E^{\bot}Xf{\parallel}}\;:\;f{\epsilon}H,\;E{\epsilon}L}\}\;<\;{\infty},\;sup\{\frac{{\parallel}Xf{\parallel}}{{\overline}{\parallel}Yf{\parallel}}\;:\;f{\epsilon}H\}\;<\;{\infty}$$ and $\bar{range\;X}=H=\bar{range\;Y}$. (2) There exists an invertible operator A in AlgL such that AX=Y.

  • PDF