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INTERPOLATION PROBLEMS FOR OPERATORS

WITH CORANK IN ALGL

Joo Ho Kang

Abstract. Let L be a subspace lattice on a Hilbert space H. And
let X and Y be operators acting on a Hilbert space H. Let sp(x) =

{αx : α ∈ C} for any x ∈ H. Assume that H = range X ⊕ sp(h)
for some h ∈ H and < h,E⊥Xf >= 0 for each f ∈ H and E ∈ L.
Then there exists an operator A in AlgL such that AX = Y if and
only if

sup

{
‖E⊥Y f‖
‖E⊥Xf‖ : f ∈ H, E ∈ L

}
= K < ∞. Moreover, if the nec-

essary condition holds, then we may choose an operator A such that
AX = Y and ‖A‖ = K.

1. Introduction

On the process of solving operator equation AX = Y for two given
operators X and Y in the algebra B(H), the class of all bounded opera-
tors acting on a Hilbert space H, many mathematicians have applied the
problem on their fields. What is a condition for the operator A to be a
member of A which is a specified subalgebra of B(H)? The subalgebras
in this problem were given in various forms and accordingly the solution
to the problem has been different.

Douglas[2] used the range inclusion property of operators to show
necessary and sufficient conditions for the existence of an operator A
satisfying AX = Y . Kadison[10] has done research on C*-algebras,
Lance[12] on nest-algebras, Hopenwasser[3] on CSL-algebras, Munch
for Hilbert-Schmidt operators on nest-algebras, and Hopenwasser[4] for
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Hilbert-Schmidt operators on CSL-algebras, Moore and Trent[13] on
CSL-algebra AlgL.

Authors[6] obtained a necessary and sufficient condition that there
exists an interpolation operator A in AlgL when every E in L reduces
A. And authors[7] showed that the necessary and sufficient condition on
[13] is satisfied in AlgL when L is a subspace lattice. Again authors[9]
proved that the condition is a condition for interpolating operator when
PE = EP for each E in L where P is the projection onto the rangeX.
In this paper author investigate an interpolation problem for operators
with corank-one in AlgL.

Let H be a Hilbert space. A subspace lattice L is a strongly closed
lattice of orthogonal projections on H containing the trivial projections
0 and I. The symbol AlgL denotes the algebra of bounded operators
on H that leave invariant every projection in L; AlgL is a weakly
closed subalgebra of B(H). Let x1, · · · , xn be vectors of H. Then
sp({x1, · · · , xn}) = {α1x1 + α2x2 + · · · + αnxn | α1, α2, · · · , αn ∈ C }.
Let M be a subset of H. Then M means the closure of M and M

⊥
the

orthogonal complement of M . Let N be the set of natural numbers and
C be the set of complex numbers.

2. The Equation AX = Y in AlgL

Let H be a Hilbert space and let B(H) be the algebra of all bounded
operators acting on H. Let L be a subspace lattice on H. Then AlgL
is the algebra of all bounded linear operators acting on H which leave
invariant each projection E in L. Assume that X and Y are operators in
B(H) and A is an operator in AlgL such that AX = Y . Then ‖E⊥Y f‖ =
‖E⊥AXf‖ = ‖E⊥AE⊥Xf‖ ≤ ‖A‖‖E⊥Xf‖, for all E ∈ L. If, for
convenience, we adopt the convention that a fraction whose numerator
and denominator are both zero is equal to zero, then the inequality above
may be stated in the form

sup
E∈L

‖E⊥Y f‖
‖E⊥Xf‖

≤ ‖A‖.

Theorem A [R. G. Douglas][2]. Let X and Y be bounded oper-
ators acting on a Hilbert space H. Then the following statements are
equivalent:

(1) rangeY ∗ ⊆ range X∗

(2) Y ∗Y ≤ λ2X∗X for some λ ≥ 0
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(3) there exists a bounded operator A on H so that AX = Y .
Moreover, if (1), (2), and (3) are valid, then there exists a unique oper-
ator A so that

(a) ‖A‖2 = inf{µ : Y ∗Y ≤ µX∗X}
(b) kerY ∗ = kerA∗ and
(c) rangeA∗ ⊆ rangeX−.

Theorem 2.1. Let L be a subspace lattice on a Hilbert space H.
And let X and Y be operators acting on a Hilbert space H. Let H =
range X ⊕ sp(h) for some h ∈ H. If < h,E⊥Xf >= 0 for each f ∈ H
and E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AX = Y .

(2) sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈ H, E ∈ L
}

= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Proof. Assume that sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈H, E∈L
}

=K<∞. Then for

each E in L, there exists an operator AE in B(H) such that AE(E⊥X) =
E⊥Y and ‖AE‖ ≤ K by Theorem A. In particular, if E = 0, then we
have an operator A0 in B(H) such that A0X = Y and ‖A0‖ ≤ K. So
AE(E⊥X) = E⊥Y = E⊥A0X. Hence AEE

⊥ = E⊥A0 on range X for
each E in L. Since < h,E⊥Xf >= 0 =< E⊥h,E⊥Xf > for any f in H,

E⊥h ∈ range E⊥X
⊥

. By the definitions of AE and A0, AEE
⊥h = 0 and

A0h = 0. So AEE
⊥x = E⊥A0x for x in range X

⊥
(= sp(h)). Therefore

AEE
⊥ = E⊥A0 on H.

For each E in L,

E⊥A0E
⊥ = AEE

⊥E⊥ = AEE
⊥ = E⊥A0 .

So A0 is an operator in AlgL.

Theorem 2.2. Let L be a subspace lattice on a Hilbert space H.
And let X and Y be operators acting on a Hilbert space H. Let n
be a natural number(n ≥ 2) and let {h1, · · · , hn} be an orthonormal
set of vectors in H such that H = range X ⊕ sp({h1, · · · , hn}). If
< hi, E

⊥Xf >= 0(i = 1, · · · , n) for each f ∈ H and E ∈ L, then the
following are equivalent.

(1) There exists an operator A in AlgL such that AX = Y .
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(2) sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈ H, E ∈ L
}

= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Proof. Assume that sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈H, E∈L
}

=K<∞. Then for

each E in L, there exists an operator AE in B(H) such that AE(E⊥X) =
E⊥Y and ‖AE‖ ≤ K by Theorem A. In particular, if E = 0, then we
have an operator A0 in B(H) such that A0X = Y and ‖A0‖ ≤ K. So
AE(E⊥X) = E⊥Y = E⊥A0X. Hence AEE

⊥ = E⊥A0 on range X
for each E in L. Since < hi, E

⊥Xf >= 0 =< E⊥hi, E
⊥Xf > (i =

1, · · · , n) for each f ∈ H and E ∈ L, E⊥hi ∈ range E⊥X
⊥

for each i =
1, 2, cdots, n. By the definitions of AE and A0, AEE

⊥hi = 0 and A0hi =

0 for each i = 1, 2, · · · , n. Hence AEE
⊥ = E⊥A0 on range X

⊥
(=

sp({h1, · · · , hn}). Therefore AEE
⊥ = E⊥A0 on H.

For each E in L,

E⊥A0E
⊥ = AEE

⊥E⊥ = AEE
⊥ = E⊥A0 .

So A0 is an operator in AlgL.

We can generalize the above theorem for the countable case.

Theorem 2.3. Let L be a subspace lattice on a Hilbert spaceH. And
let X and Y be operators acting on a Hilbert space H. Let {h1, h2, · · · }
be an orthonormal set of vectors hi in H such that H = range X ⊕
sp({h1, h2, · · · }). If < hi, E

⊥Xf >= 0(i = 1, 2, · · · ) for each f ∈ H and
E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AX = Y .

(2) sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈ H, E ∈ L
}

= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Corollary 2.4. Let L be a subspace lattice on a Hilbert space H.
And let X and Y be operators acting on a Hilbert space H. Let B be

a basis of range X
⊥
. If < h,E⊥Xf >= 0 for each h ∈ B, f ∈ H and

E ∈ L, then the following are equivalent.
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(1) There exists an operator A in AlgL such that AX = Y .

(2) sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈ H, E ∈ L
}

= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Let H be a Hilbert space and let B(H) be the algebra of all bounded
operators acting on H. Let L be a subspace lattice on H. Then AlgL is
the algebra of all bounded linear operators acting on H which leave in-
variant each projection E in L. Assume that X1, · · · , Xn and Y1, · · · , Yn
are operators in B(H) and A is an operator in AlgL such that AXi = Yi
for each i = 1, · · · , n. Then E⊥Yifi = E⊥AXifi = E⊥AE⊥Xifi for
each i = 1, · · · , n and E ∈ L. Hence

‖
n∑

i=1

E⊥Yifi‖ = ‖
n∑

i=1

E⊥AXifi‖

= ‖
n∑

i=1

E⊥AE⊥Xifi‖

≤ ‖A‖‖
n∑

i=1

E⊥Xifi‖

for all E ∈ L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
the inequality above may be stated in the form

sup
E∈L

‖
∑n

i=1E
⊥Yifi‖

‖
∑n

i=1E
⊥Xifi‖

≤ ‖A‖.

Theorem 2.5. Let X1, · · · , Xn and Y1, · · · , Yn be bounded operators
acting on H. Let H = range Xk ⊕ sp(h) for some k in {1, · · · , n} and
some h ∈ H. If < h,E⊥Xif >= 0(i = 1, · · · , n) for each f ∈ H and
E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · , n.

(2) sup

{
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
: fi ∈ H, E ∈ L

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.
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Proof. Assume that sup

{
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
: fi ∈ H, E ∈ L

}
= K <

∞. Let E be in L and

ME =

{
n∑

i=1

E⊥Xifi : fi ∈ H

}
.

Define AE : ME → H by AE(
∑n

i=1E
⊥Xifi) =

∑n
i=1E

⊥Yifi. Then

AE is well-defined and bounded linear. Extend AE onME continuously.
Define AEf = 0 for each f ∈ME

⊥. Then AE : H → H is a bounded
linear and AEE

⊥Xi = E⊥Yi for each i = 1, · · · , n. If E = 0, then
A0Xi = Yi for i = 1, · · · , n. Hence AE(E⊥Xi) = E⊥Yi = E⊥A0Xi for
each i = 1, · · · , n. We will show that AEE

⊥ = E⊥A0 on H. Since
AE(E⊥Xk) = E⊥Yk = E⊥(A0Xk), AEE

⊥ = E⊥A0 on range Xk for
each E in L. Since < h,E⊥Xif >= 0(i = 1, · · · , n) for any f in H,

< h,
∑n

i=1E
⊥Xifi >= 0. Hence E⊥h ∈ ME

⊥
. So AEE

⊥h = 0 and

A0h = 0. Hence AEE
⊥ = E⊥A0 on sp(h). Therefore AEE

⊥ = E⊥A0

on H.

For each E in L,

E⊥A0E
⊥ = AEE

⊥E⊥ = AEE
⊥ = E⊥A0 .

So A0 is an operator in AlgL and A0Xi = Yi(i = 1, · · · , n).

Theorem 2.6. Let X1, · · · , Xn and Y1, · · · , Yn be bounded operators
acting on H. Let m be a natural number(m ≥ 2) and let {h1, · · · , hm}
be an orthonormal set of vectors hj in H such that H = range Xk ⊕
sp({h1, · · · , hm}) for some k in {1, 2, · · · , n}. If < hj , E

⊥Xkf >= 0(i =
1, · · · , n, j = 1, · · · ,m) for each f ∈ H and E ∈ L, then the following
are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · , n.

(2) sup

{
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
: fi ∈ H, E ∈ L

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.
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Proof. Assume that sup

{
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
: fi ∈ H, E ∈ L

}
= K <

∞. Let E be in L and

ME =

{
n∑

i=1

E⊥Xifi | fi ∈ H

}
.

Define AE : ME → H by AE(
∑n

i=1E
⊥Xifi) =

∑n
i=1E

⊥Yifi and

AEf = 0 for all f ∈ME
⊥. Then AE is well-defined and bounded linear.

Extend AE on ME continuously. Define AEf = 0 for each f ∈ ME
⊥.

Then AE : H → H is a bounded linear and AEE
⊥Xi = E⊥Yi for

each i = 1, · · · , n. If E = 0, then A0Xi = Yi for i = 1, · · · , n. Hence
AE(E⊥Xi) = E⊥Yi = E⊥A0Xi for each i = 1, · · · , n. We will show
that AEE

⊥ = E⊥A0 on H. Since AE(E⊥Xk) = E⊥Yk = E⊥(A0Xk),
AEE

⊥ = E⊥A0 on range Xk for each E in L. Since < hj , E
⊥Xif >=

0(i = 1, · · · , n, j = 1, · · · ,m) for any f in H, < hj ,
∑n

i=1E
⊥Xif >= 0.

Hence E⊥hj ∈ ME
⊥ for j = 1, · · · ,m. By the definition of AE and

A0, AEE
⊥hj = 0 and A0hj = 0 for each j = 1, · · · ,m. Hence AEE

⊥ =

E⊥A0 on range Xk
⊥

(= sp({h1, · · · , hm}) ). Therefore AEE
⊥ = E⊥A0

on H.
For each E in L,

E⊥A0E
⊥ = AEE

⊥E⊥ = AEE
⊥ = E⊥A0 .

So A0 is an operator in AlgL and A0Xi = Yi(i = 1, · · · , n).

Theorem 2.7. Let X1, · · · , Xn and Y1, · · · , Yn be bounded operators
acting on H. Let {h1, h2, · · · } be an orthonormal set of vectors hj in H
such that H = range Xk ⊕ sp({h1, h2, · · · }) for some k in {1, 2, · · · , n}.
If < hj , E

⊥Xif >= 0(i = 1, · · · , n, j = 1, 2, · · · ) for each f ∈ H and
E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · , n.

(2) sup

{
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
: fi ∈ H, E ∈ L

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Corollary 2.8. Let X1, · · · , Xn and Y1, · · · , Yn be bounded oper-

ators acting on H. Let B be a basis of range Xk
⊥

for some k in
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{1, 2, · · · , n}. If < h,E⊥Xif >= 0(i = 1, · · · , n) for each h ∈ B, f ∈ H
and E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · , n.

(2) sup

{
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
: fi ∈ H, E ∈ L

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

We can generalize above Theorems to the countable case easily.

Let H be a Hilbert space and let B(H) be the algebra of all bounded
operators acting on H. Let L be a subspace lattice on H. Then AlgL
is the algebra of all bounded linear operators acting on H which leave
invariant each projection E in L. Assume that {Xi} and {Yi} are op-
erators in B(H) and A is an operator in AlgL such that AXi = Yi for
each i = 1, 2, · · · . Then E⊥Yifi = E⊥AXifi = E⊥AE⊥Xifi for each
i = 1, 2, · · · and E ∈ L. Hence

‖
n∑

i=1

E⊥Yifi‖ = ‖
n∑

i=1

E⊥AXifi‖

= ‖
n∑

i=1

E⊥AE⊥Xifi‖

≤ ‖A‖‖
n∑

i=1

E⊥Xifi‖

for all E ∈ L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
the inequality above may be stated in the form

sup
E∈L

‖
∑n

i=1E
⊥Yifi‖

‖
∑n

i=1E
⊥Xifi‖

≤ ‖A‖.

Theorem 2.9. Let Xi and Yi be bounded operators acting on H for
all i = 1, 2, · · · . Let H = range Xk⊕ sp(h) for some k in {1, · · · , n} and
some h ∈ H. If < h,E⊥Xkf >= 0 for each f ∈ H and E ∈ L, then the
following are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · .
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(2) sup

{
‖E⊥(

∑m
i=1 Yifi)‖

‖E⊥(
∑m

i=1Xifi)‖
: fi ∈ H, E ∈ L, m ∈ N

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Theorem 2.10. Let Xi and Yi be bounded operators acting on H for
all i = 1, 2, · · · . Letm be a natural number(m ≥ 2) and let {h1, · · · , hm}
be an orthonormal set of vectors hj in H such that H = range Xk ⊕
sp({h1, · · · , hm}) for some k in {1, 2, · · · , n}. If < hj , E

⊥Xif >= 0(i =
1, · · · , j = 1, · · · ,m) for each f ∈ H and E ∈ L, then the following are
equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · .

(2) sup

{
‖E⊥(

∑m
i=1 Yifi)‖

‖E⊥(
∑m

i=1Xifi)‖
: fi ∈ H, E ∈ L, m ∈ N

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Theorem 2.11. Let Xi and Yi be bounded operators acting on H for
all i = 1, 2, · · · . Let {h1, h2, · · · } be an orthonormal set of vectors hj inH
such that H = range Xk ⊕ sp({h1, h2, · · · }) for some k in {1, 2, · · · , n}.
If < hj , E

⊥Xif >= 0(i = 1, · · · , j = 1, 2, · · · ) for each f ∈ H and
E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · .

(2) sup

{
‖E⊥(

∑m
i=1 Yifi)‖

‖E⊥(
∑m

i=1Xifi)‖
: fi ∈ H, E ∈ L, m ∈ N

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

Corollary 2.12. Let Xi and Yi be bounded operators acting on H
for all
i = 1, 2, · · · . Let B be a basis of range Xk

⊥
for some k in {1, 2, · · · , n}.

If < h,E⊥Xif >= 0(i = 1, · · · ) for each h ∈ B, f ∈ H and E ∈ L, then
the following are equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for
i = 1, 2, · · · .
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(2) sup

{
‖E⊥(

∑m
i=1 Yifi)‖

‖E⊥(
∑m

i=1Xifi)‖
: fi ∈ H, E ∈ L, m ∈ N

}
= K <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K.

3. The Equation Ax = y in AlgL

Let x and y be vectors in H and A be an operator in AlgL such that
Ax = y. Then ‖E⊥y‖ = ‖E⊥Ax‖ = ‖E⊥AE⊥x‖ ≤ ‖A‖‖E⊥x‖ for all
E ∈ L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
the above inequality may be stated in the form

sup
E∈L

‖E⊥y‖
‖E⊥x‖

≤ ‖A‖.

We consider the above fact when L is a subspace lattice without the
commutative condition.

Let x, y and g be non-zero vectors in H. Let X = x⊗g and Y = y⊗g.
Then we can obtain the following by Theorem 2.1 and Corollary 2.4.

Theorem 3.1. Let L be a subspace lattice on H and let x and y be

vectors in H. If < h,E⊥x >= 0 for each h ∈ sp(x)⊥ and E ∈ L, then
the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y.

(2) sup

{
‖E⊥y‖
‖E⊥x‖

: E ∈ L
}

= K0 <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K0.
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Proof. Assume that

{
‖E⊥y‖
‖E⊥x‖

: E ∈ L
}

= K0 < ∞. Let g be non-

zero vectors in H and X = x⊗ g and Y = y ⊗ g. Then

‖E⊥Y f‖ = ‖E⊥(y ⊗ g)f‖

= ‖E⊥ < f, g > y‖

= ‖ < f, g > E⊥y‖ and

‖E⊥Xf‖ = ‖E⊥(x⊗ g)f‖

= ‖E⊥ < f, g > x‖

= ‖ < f, g > E⊥x‖ .

Hence sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈ H and E ∈ L
}

= sup

{
‖E⊥y‖
‖E⊥x‖

: E ∈ L
}

.
Since

sup

{
‖E⊥Y f‖
‖E⊥Xf‖

: f ∈ H and E ∈ L
}
<∞, there exists an operator A in

AlgL such that AX = Y by Theorem 2.1. Since AX = A(x ⊗ g) =
(Ax)⊗ g = y ⊗ g, Ax = y.

Let xi, yi(i = 1, · · · , n) and g be non-zero vectors inH. Let X = xi⊗g
and Y = yi ⊗ g. Then the next theorem is obtained by modifying the
proof used in Theorem 2.5 and Corollary 2.8.

Let x1, · · · , xn and y1, · · · , yn be vectors in H and A be an operator
in AlgL such that Axi = yi(i = 1, · · · , n). Then E⊥αiyi = E⊥αiAxi =
αiE

⊥AE⊥xi = E⊥AE⊥αixi for all E ∈ L. Hence

‖
n∑

i=1

E⊥αiyi‖ = ‖
n∑

i=1

E⊥αiAxi‖

= ‖
n∑

i=1

E⊥AE⊥αixi‖

≤ ‖A‖‖
n∑

i=1

E⊥αixi‖

for all E ∈ L. If, for convenience, we adopt the convention that a fraction
whose numerator and denominator are both zero is equal to zero, then
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the above inequality may be stated in the form

sup
E∈L

‖
∑n

i=1E
⊥αiyi‖

‖
∑n

i=1E
⊥αix‖

≤ ‖A‖.

Theorem 3.2. Let L be a subspace lattice on H and let x1, · · · , xn
and y1, · · · , yn be vectors in H. If < h,E⊥xi >= 0(i = 1, · · · , n) for each
h ∈ sp(xk)⊥, E ∈ L and for some k in {1, 2, · · · , n}, then the following
are equivalent.

(1) There exists an operator A in AlgL such that Axi = yi for i =
1, 2, · · · , n.

(2) sup

{
‖E⊥

∑n
i=1 αiyi‖

‖E⊥
∑n

i=1 αixi‖
: E ∈ L, αi ∈ C

}
= K0 <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K0.

Proof. Assume that sup

{
‖E⊥

∑n
i=1 αiyi‖

‖E⊥
∑n

i=1 αixi‖
: E ∈ L, αi ∈ C

}
= K0 <

∞. Let g be a non-zero vector in H and Xi = xi⊗ g and Yi = yi⊗ g for
i = 1, · · · , n. Then

‖E⊥(
n∑

i=1

Yifi)‖ = ‖
n∑

i=1

E⊥(yi ⊗ g)fi‖

= ‖
n∑

i=1

E⊥ < fi, g > yi‖

= ‖E⊥
n∑

i=1

< fi, g > yi‖ and

‖E⊥(

n∑
i=1

Xifi)‖ = ‖
n∑

i=1

E⊥(xi ⊗ g)fi‖

= ‖
n∑

i=1

E⊥ < fi, g > xi‖

= ‖E⊥
n∑

i=1

< fi, g > xi‖ .
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Hence
‖E⊥(

∑n
i=1 Yifi)‖

‖E⊥(
∑n

i=1Xifi)‖
=
‖
∑n

i=1 < fi, g > E⊥y‖
‖
∑n

i=1 < fi, g > E⊥x‖
for each E ∈ L.

Since

sup

{
‖E⊥

∑n
i=1 αiyi‖

‖E⊥
∑n

i=1 αixi‖
: E ∈ L, αi ∈ C

}
= K0 < ∞, then there exists

an operator A in AlgL such that AXi = Yi(i = 1, · · · , n) by Theorem
2.5. Since AXi = A(xi ⊗ g) = (Axi) ⊗ g = yi ⊗ g, yi = Axi for each
i = 1, · · · , n.

We can extend Theorem 3.2 to countably infinite vectors and get the
following theorem from Theorem 2.9 and Corollary 2.12.

Theorem 3.3. Let L be a subspace lattice on H and let xi and yi be

vectors in H for i ∈ N. If < h,E⊥xi >= 0 for each h ∈ sp(xk)⊥, E ∈ L
and for some k in {1, 2, · · · }, then the following are equivalent.

(1) There exists an operator A in AlgL such that Axi = yi for i =
1, 2, · · · .

(2) sup

{
‖E⊥

∑n
i=1 αiyi‖

‖E⊥
∑n

i=1 αixi‖
: E ∈ L, αi ∈ C, n ∈ N

}
= K0 <∞.

Moreover, if condition (2) holds, we may choose an operator A such that
‖A‖ = K0.
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