• Title/Summary/Keyword: Lattice simulation

Search Result 340, Processing Time 0.036 seconds

Simulation of the Geometries and Energies of $C_{24} and C_{60}$based on a Semiempirical Potential (반경험적 포텐셜에 의한 $C_{24}와 C_{60}$의 구조 및 에너지에 관한 시뮬레이션)

  • 이종무
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • The geometries and energyies of C24 and C60 tullerenes have been calculated by the lattice statics simplation technique based on a semiempirical Tersoff Potential. The simulation results results agree well with ab initio calculations.

  • PDF

Numerical study of propagation, reflection, and scattering of ultrasonic waves (초음파의 전파, 반사, 산란 현상에 대한 수치 시뮬레이션)

  • 임현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.401-406
    • /
    • 2002
  • A numerical model is introduced to simulate propagation, reflection, and scattering of elastic waves in solids. The model consists of mass points and linear springs, interconnected with in a lattice structure; hence, its name, the mass-spring lattice model (MSLM). The MSLM has successfully been applied to the numerical simulation and visualization of various elastic wave phenomena involved in ultrasonic nondestructive testing (NDT). This method is useful to simulate, design, or analyze actual testing. Some representative examples of numerical simulation using the MSLM are presented, and future work necessary for its further development Is addressed.

  • PDF

Triplet Exciton Annihilation Process on Two Dimensional Lattice of Naphthalene Choleic Acid Creystals

  • 송추윤;박치헌;장현화;남규천;최용국;국성근
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1000-1004
    • /
    • 1996
  • A random walk simulation was used to determine the triplet exciton density and annihilation rate for a two dimensional lattice of naphthalene choleic acid with small amount of β-methylnaphthalene (BMN). The results demonstrate that energy transfer efficiency (α) increases as density increases and the annihilation begins to become significant at triplet exciton densities higher then 10-3/sites. Another simulation was carried out to determine annihilation rate and unimolecular decay rate in the absence of BMN. The results indicate that the annihilation rate is equal to the unimolecular decay rate at the density of 1.2×10-3/sites.

Lattice Reduction Aided Preceding Based on Seysen's Algorithm for Multiuser MIMO Systems (다중 사용자 MIMO 시스템을 위한 Seysen 알고리즘 기반 Lattice Reduction Aided 프리코팅)

  • An, Hong-Sun;Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.915-921
    • /
    • 2009
  • Lenstra-Lenstra-Lovasz (LLL) algorithm, which is one of the lattice reduction (LR) techniques, has been extensively used to obtain better bases of the channel matrix. In this paper, we jointly apply Seysen's lattice reduction Algorithm (SA), instead of LLL, with the conventional linear precoding algorithms. Since SA obtains more orthogonal lattice bases compared to those obtained by LLL, lattice reduction aided (LRA) precoding based on SA algorithm outperforms the LRA precoding with LLL. Simulation results demonstrate that a gain of 0.5dB at target BER of $10^{-5}$ is achieved when SA is used instead of LLL or the LR stage.

Propagation Dynamics of a Finite-energy Airy Beam with Sinusoidal Phase in Optical Lattice

  • Huang, Xiaoyuan;Chen, Manna;Zhang, Geng;Liu, Ye;Wang, Hongcheng
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.267-272
    • /
    • 2020
  • The propagation of a truncated Airy beam with spatial phase modulation (SPM) is investigated in Kerr nonlinearity with an optical lattice. Before the truncated Airy beam enters the optical lattice, a sinusoidal phase is introduced on the wave-front of the beam. The effect of the spatial phase modulation and optical lattice on propagation behavior is analyzed by direct numerical simulation. It is found that the propagation direction of a truncated Airy beam can be effectively controlled by adjusting the values of phase shift. The effects of optical amplitude, truncation factor, spatial modulation frequency, lattice period and lattice depth on the propagation are discussed in detail. By choosing a high modulation depth, the finite-energy Airy beam can be deflected with a large deflection angle in an optical lattice.

Lattice Reduction-aided Detection with Out-of-Constellation Point Correction for MIMO Systems (MIMO 시스템을 위한 Out-of-Constellation Point 보정 Lattice Reduction-aided 검출기법)

  • Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1339-1345
    • /
    • 2007
  • An important drawback in Lattice Reduction (LR) aided detectors has been investigated. For the solution, an improved LR aided detection with ignorable complexity overhead is proposed for MIMO system, where the additional correction operation is performed for the case of unreliable symbol decision. We found that LR aided detection errors mainly occur when the lattice points after the inverse lattice transform in the final step fall outside the constellation point set. In the proposed scheme, we check whether or not the lattice point obtained through LR detection is out of constellation. Only for the case of out of constellation, we additionally perform ML search with reduced search region restricted to the neighboring points near to the obtained lattice points. Using this approach, we can effectively and significantly improve the detection performance with just a slight complexity overhead which is negligible compared to full searched ML scheme. Simulation results show that the proposed scheme achieves the detection performance near to that of the ML detection with a lower computational complexity.

CANCELLATION OF ECHOES IN TELEPHONE NETWORK WITH THE ADAPTIVE STEP SIZE LATTICE FORM STRUCTURE

  • Benjangkaprasert, Chawalit;Teerasakworakun, Sirirat;Benchapornkullanij, Sirithon;Janchithapongvej, Kanok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.87.2-87
    • /
    • 2002
  • $\textbullet$ Introduction of an adaptive echoes canceller in telephone network and the propose $\textbullet$ The echoes canceller structure $\textbullet$The Lattice/Transversal Joint structure $\textbullet$ The propose robust variable step-size algorithm for lattice form structure $\textbullet$ Performance evaluation $\textbullet$ Simulation results $\textbullet$ Conclusion

  • PDF

Covariance Lattice Instrumental Variable Algorithm for Spectral Estimation (스펙트럼 추정을 위한 공분산 기구변수 격자 앨고리즘)

  • 양흥석;남현도;김진기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.4
    • /
    • pp.156-162
    • /
    • 1986
  • The last few years have seen a rapid development of so-called lattice algorithms for the fast solution of finite date algorithms. So far, most of the work on ladder form has been done for the prewindowed case. In this paper, the covariance lattice algorithm for instrumental variable recusions is presented. This algorithm can be used in various areas of adaptive signal processing, spectral estimation and system identification. The behavior of the proposed algorithm is illustrated by some simulation results for spectral estimation.

  • PDF

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.