DOI QR코드

DOI QR Code

Triplet Exciton Annihilation Process on Two Dimensional Lattice of Naphthalene Choleic Acid Creystals

  • Published : 1996.11.20

Abstract

A random walk simulation was used to determine the triplet exciton density and annihilation rate for a two dimensional lattice of naphthalene choleic acid with small amount of β-methylnaphthalene (BMN). The results demonstrate that energy transfer efficiency (α) increases as density increases and the annihilation begins to become significant at triplet exciton densities higher then 10-3/sites. Another simulation was carried out to determine annihilation rate and unimolecular decay rate in the absence of BMN. The results indicate that the annihilation rate is equal to the unimolecular decay rate at the density of 1.2×10-3/sites.

Keywords

References

  1. Top. Appl. Phys. v.479 Exciton Dynamics in Molecular Solids Francis, A. H.;Kopelman, R.
  2. Chem. Phys. v.21 Kopelman, R.;Monberg, E. M.;Ochs, F. W.
  3. J. Phys. Chem. v.80 Kopelman, R.
  4. Topics in Applied Physics; Radiationless Processes in Molecular and Condensed Phase v.15 Exciton Percolation in Molecular Alloys and Aggregates Kopelman, R.
  5. J. Stat. Phys. v.19 Hoshen, J.;Kopelman, R.;Monberg, E. M.
  6. J. Phys. Chem. v.87 Klymko, P. W.;Kopelman, R.
  7. J. Chem. Phys. v.70 Ahlgren, D. C.;Kopelman, R.
  8. J. Phys. Chem. v.86 Klymko, P. W.;Kopelman, R.
  9. J. Chem. Phys. v.81 Gentry, S. T.;Kopelman, R.
  10. Molecular Electronic Divices Hanson, D. M.;Carter, F. L.(ed.)
  11. Can. J. Phys. v.44 Lipsett, F. R.;Macpherson, G.
  12. J. Chem. Phys. v.51 Hanson, D. M.
  13. Chem. Phys. Lett. v.64 Ahlgren, D. C.;Monberg, E. M.;Kopelman, R.
  14. J. Phys. Chem. v.98 Kook, S. K.;Hanson, D. M.
  15. Inclusion Compound: Structural Aspects of Inclusion Compounds Formed by Organic Host Lattice v.2 Structure and Design of Inclusion Compounds: the Dexa-hosts and symmetry consideration MacNICOL, D. D.;J. L. Atwood(ed.);J. E. Davies(ed.);D. D. MacNICOL(ed.)
  16. Phys. Rev. v.B14 Hoshen, J.;Kopelman, R.
  17. Introduction to Percolation Theory; Tayler and Francis Stauffer, D.
  18. Rep. Prog. Phys. v.43 Essam, J. W.
  19. Mechanical of photophysical and photochemical Reactions in polymers Rabek, J. K.
  20. Phys. Rev. v.B22 von. Burg, K.;Altwegg, L.;Zschokke-Granacher. I.
  21. J. Chen. Phys. v.56 Ern, V.
  22. J. Phys. Chem. v.97 Kook, S. K.;Hanson, D. M.
  23. Ph. D. Dissertation, Department of Chemistry, State University of New York at Stony Brook Kook, S. K.
  24. Opt. Spec. v.7 Ermolaev, V. L.;Svitasher, K. K.
  25. Opt. Spec. v.22 Ermolaev, V. L.;Sveshnikova, E. B.;Saenko, E. A.
  26. J. Chem. Phys. v.57 Li, R.;Lim, E. C.
  27. J. Am. Chem. Soc. v.93 karamos, G.;Kole, T.;Scribe, P.;Dalton, J. C.;Turro, N. J.
  28. Bull. Korean Chem. Soc. v.16 Park, C. H.;Song, C. Y.;Woo, H. G.;Choi, Y. K.;Kook, S. K.