• Title/Summary/Keyword: Lattice simulation

Search Result 340, Processing Time 0.025 seconds

Dependency of Long-range Order Parameter on the Ordered Structure of $Pb(Mg_{1/3}Nb_{2/3})O_3$ Solid Solutions ($Pb(Mg_{1/3}Nb_{2/3})O_3$ 고용체의 규칙격자 구조에 있어서 장거리 규칙도의 의존성)

  • Park, Kyeong-Soon;Kim, Jwa-Yeon;Lee, Jae-Won;Kim, Kwang-Bae
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.415-424
    • /
    • 1998
  • The dependency of long-range order parameter on the ordered structure of $Pb(Mg_{1/3}Nb_{2/3})O_3$ solid solutions has been investigated by means of computer simulations of high-resolution lattice images. The computer image simulations were performed by the multislice method in a wide range of sample thicknesses, defocusing values, and long-range order parameters. It was found that the lattice images of the ordered structures were predominantly dependent on the long-range order parameter, The lattice images in a complete ordered structure showed a pseudo-hexagonal pattern. As the order parameter decreases, the simulated images changed slowly from a pseudo-hexagonal pattern to a rectangular pattern. The lattice images in a complete disordered structure showed a rectangular pattern. Also, the simulated images of the $Pb(Mg_xNb_{1-x})O_3$ with different Mg:Nb ratios obtained at a given long-range order parameter were basically the same patterns, irrespective of Mg and Nb compositions.

  • PDF

An Efficient 2D Discrete Wavelet Transform Filter Design Using Lattice Structure (Lattice 구조를 갖는 효율적인 2차원 이산 웨이블렛 변환 필터 설계)

  • Park, Tae-Geun;Jeong, Seon-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we design the two-dimensional Discrete Wavelet Transform (2D DWT) filter that is widely used in various applications such as image compression because it has no blocking effects and relatively high compression rate. The filter that we used here is two-channel four-taps QMF(Quadrature Mirror Filter) Lattice filter with PR (Perfect Reconstruction) property. The proposed DWT architecture, with two consecutive inputs shows an efficient performance with a minimum of such hardware resources as multipliers, adders, and registers due to a simple scheduling. The proposed architecture was verified by the RTL simulation, and utilizes the hardware 100%. Our architecture shows a relatively high performance with a minimum hardware when compared with other approaches. An efficient memory mapping and address generation techniques are introduced and the fixed-point arithmetic analysis for minimizing the PSNR degradation due to quantization is discussed.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method (와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측)

  • 유능수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1264-1271
    • /
    • 1990
  • The vortex lattice method was adopted to predict the aerodynamic performance of a horizontal axis wind turbine. For this simulation. the rotor blade was divided into many panels both in chordwise and spanwise direction and then replaced by horseshoe vortices. The wake was divided into two parts of near wake and far wake : the near wake was assumed as helical vortex line elements and the far wake was modeled by semi-infinite circular vortex cylinder. The induced velocity components were calculated by the Biot-Savart law. By this way the power coefficient was obtained and represented as a function of the tip speed ratio. The numerical results obtained were compared with those of the other methods and experimental results and showed good agreement with experimental results.

Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

  • Mara, T.G.;Galsworthy, J.K.;Savory, E.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.413-431
    • /
    • 2010
  • The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

Performance of a 3-Dimensional Signal Transmission System (3차원 신호 전송시스템의 성능)

  • Kwon, Hyeock Chan;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2021-2026
    • /
    • 2016
  • In this paper, a system model for transmission of 3-dimensional (3-D) signals is presented and its performance is analyzed. Unlike 2-D signals, no quadrature form expression for the 3-D signals is available. Exploiting a set of orthogonal basis functions, the 3-D signals are transmitted. As a result of computer simulation using very higher-level signal constellations, the 3-D transmission system has significantly improved error performance as compared with the 2-D system. It is considered that the principal reason for such performance improvement is much increased minimum Euclidean distance (MED) of the 3-D lattice constellations compared with the corresponding 2-D ones. When the MEDs of 2-D and 3-D lattice constellation are compared to confirm the analysis, the MED of 3-D 1024-ary constellation is around 2.6 times larger than that of the quadrature amplitude modulation (QAM). Expanding the constellation size to 4096, the MED of 3-D lattice constellation is increased by 3.2 times of the QAM.

Two-dimensional Computer Simulation of Percolation Structure in Two-Phase Composites (2상 복합재료에 있어서 percolation구조의 2차원 컴퓨터 시뮬레이션)

  • Shin, Soon-Gi;Lee, You-Sil;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.929-935
    • /
    • 2001
  • Two-dimensional computer simulations were conducted on percolation structure in which second phases of various aspect ratios were arranged in a lattice (matrix). The second phases were randomly arranged in an array with two different computational programs; one prohibiting an overlap among second phases and the other allowing the overlap. From the simulation prohibiting the overlap, it was predicted that a complete path was formed at less amounts of the second phase with higher aspect ratios. In the simulation allowing the overlap, a complete path throughout the array was formed by arranging the second phase of an aspect ratio of 1. 5, 20, 100 with less than 59%, 43%, 19%, 4% in the array, respectively.

  • PDF

Simulation of Two Phase Flow in Porous Media After Disso of Methane Hydrates (다공성 매질 내에서 메탄 하이드레이트의 분해에 의한 2 상 유동 해석)

  • Chang, Dong-Gun;Kim, Nam-Jin;Lee, Jae-Yong;Kim, Chong-Bo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.241-246
    • /
    • 2000
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bondin create host lattice cavities that can enclose a large variety of guest gas molecules. The natural hydrate crystal may exist at low temperature above the normal freezing point of water and pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the ear many production schemes are being studied. In the present investigation, depressurization method considered to predict the production of gas and the simulation of the two phase flow - gas and - in porous media is being carried out. The simulation show about the fluid flow in porous have a variety of applications in industry. Results provide the appearance of gas and water prod the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pl front.

  • PDF

BRIEF REVIEW OF LATEST DIRECT NUMERICAL SIMULATION ON POOL AND FILM BOILING

  • Kunugi, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.847-854
    • /
    • 2012
  • Despite extensive research efforts, the mechanism of the nucleate boiling phenomena is still not clear. A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify its heat transfer characteristics and discuss their mechanism. Therefore, many DNS procedures have been developed based on recent highly advancing computer technologies. This brief review focuses on the state of the art in direct numerical simulation of the pool boiling phenomena over the past two decades. In this review, the fundamentals of the boiling phenomena and the bubble departure and micro-layer models are briefly introduced, and then the numerical procedures for tracking or capturing interface/surface shape such as the front tracking method, level set method, volume of fluid treatments, and other methods (Lattice Boltzmann method, phase-field method and so on) are briefly reviewed.

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF