• Title/Summary/Keyword: Lattice oxygen

Search Result 224, Processing Time 0.03 seconds

THE PARTIAL COMBUSTION OF METHANE TO SYNGAS OVER PRECIOUS METALS AND NICKEL CATALYSTS SUPPORTED ON -γAL2O3 AND CEO2

  • Seo, Ho-Joon
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2005
  • The catalytic activity of precious metals(Rh, Pd, Pt) and nickel catalysts supported on ${\gamma}-Al_2O_3\;and\;CeO_2$ in the partial combustion of methane(PCM) to syngas was investigated based on the product distribution in a fixed bed now reactor under atmospheric condition and also on analysis results by SEM, XPS, TPD, BET, and XRD. The activity of the catalysts based on the syngas yield increased in the sequence $Rh(5)/CeO_2{\geq}Ni(5)/CeO_2>>Rh(5)/Al_2O_3>Pd(5)/Al_2O_3>Ni(5)/Al_2O_3$. Compared to the precious catalysts, the syngas yield and stability of the $Ni(5)/CeO_2$ catalyst were almost similar to $(5)/CeO_2$ catalyst, and superior to these of any other catalysts. The syngas yield of $Ni(5)/CeO_2$ catalyst was 90.66% at 1023 K. It could be suggested to be the redox cycle of the successive reaction and formation of active site, $Ni^{2-}$ and the lattice oxygen, $O^{2-}$ produced due to reduction of $Ce^{4-}$ to $Ce^{3-}$.

Fluorine-Doping Effect on Structural and Optical Properties of ZnO Nanorods Synthesized by Hydrothermal Method

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jong Su;Lee, Sang-Heon;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.1-204.1
    • /
    • 2013
  • Fluorine, the radius of which is close to that of oxygen, could be an appropriate anion doping candidate. A lower lattice distortion could be expected for F doping, compared with Al, Ga, and In doping. F-doped ZnO (FZO) and undoped ZnO nanorods were grown onto glass substrate by the hydrothemal method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0.0 to 10.0 in 2.0 steps. To investigate the effects of the structure and optical properties of FZO nanorods were investigated using X-ray diffraction, UV-visible spectroscopy and photoluminescence (PL). For the PL spectra, the maximum peak position of NBE moves to higher energy, from 0 to 4 at.%. As the doping concentration increases, the maximum peak position of NBE gradually moves to lover energy, from 4 to 10 at.%.

  • PDF

Infrared Spectra and Electrical Conductivity of The Solid Solutions X MgO + (1-X) ${\alpha}-Nb_2$ $O_5$; 0.01{\leq}X{\leq}0.09

  • Park Zin;Park, Jong Sik;Lee Dong Hoon;Jun Jong Ho;Yo Chul Hyun;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.127-131
    • /
    • 1992
  • Changes in network structures of ${\alpha}-Nb_2O_5$ in the X MgO+(1-X) ${\alpha}-Nb_2O_5$ solid solutions occurring as the MgO doping level (X) was varied were investigated by means of infrared spectroscopy and X-ray analysis. X-ray diffraction revealed that all the synthesized specimens have the monoclinic structure. The FT-IR spectroscopy showed that the system investigated forms the solid solutions in which $Mg^{2+}$ ions occupy the octahedral sites in parent crystal lattice. Electrical conductivities were measured as a function of temperature from 600 to $1050{\circ}$ and $P_{O2}$ form $1{\times}10^{-5}$ to $2{\times}10^{-1}$ atm. The defect structure and conduction mechanism were deduced from the results. The $1}n$ value in ${\alpha}{\propto}{P_{O2}^{1}n}}$ is found to be -1/4 with single possible defect model. From the activation energy ($E{\alpha}$ = 1.67-1.73 eV) and the1/n value, electronic conduction mechanism is suggested with a doubly charged oxygen vacancy.

Substitution Effect of Fluorine on $HoBa_2Cu_3O_{7-x}F_y(0.0{\leq}y{\leq}0.5)$ Superconductors

  • Park, Jong Sik;Kim Seong Han;Kim, Hong Seok;Cho Seung Koo;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.131-135
    • /
    • 1992
  • High-Tc superconducting materials, $HoBa_2Cu_3O_{7-x}F_y$ with $0.0{\leq}y{\leq}0.5$, were synthesized by ceramic method and studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and resistivity measurement. From the X-ray diffraction data, it was found that the samples had only single phase of which lattice volumes were decreased in proportional to the amount of fluorine, which indicated that the relatively small fluorine atoms are effectively substituted for the oxygen sites. Also, an anomalous phenomenon appeared that the peak intensities of (001) planes were greatly increased as fluorine contents increased. SEM photographs revealed that the grain sizes were enlarged progressively with fluorine contents. This fact could be explained along with DTA & TGA data that the incorporation of fluorine gave rise to lowering the melting point. Tc decreased as the incorporation of fluorine content increased. This implies that the superconducting electrons are perturbed due to the substitution of electronegative fluorine atom.

Kinetics and Mechanisms of the Oxidation of Carbon Monoxide on $Eu_{1-x}Sr_xCoO_{3-y}$ Perovskite Catalysts

  • Dong Hoon Lee;Joon Ho Jang;Hong Seok Kim;Yoo Young Kim;Jae Shi Choi;Keu Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.511-516
    • /
    • 1992
  • The catalytic oxidation of CO on perovskite $Eu_{1-x}Sr_xCoO_{3-y}$, has been investigated at reaction temperatures from 100 to $250^{\circ}C$ under stoichiometric CO and $O_2$ partial pressures. The microstructure and Sr-substitution site of the catalyst were studied by means of infrared spectroscopy. The reaction rates were found to be correlated with 1.5-and 1.0-order kinetics with and without a $CO_2$ trap, respectively; first-and 0.5-order with respect to CO and 0.5-order to $O_2$ with the activation energy of 0.37 eV $mol^{-1}$. It was found from IR, ${\sigma}$ and kinetic data that $O_2$ adsorbs as an ionic species on the oxygen vacancies, while CO adsorbs on the lattice oxygens. The oxidation reaction mechanism is suggested from the agreement between IR, ${\sigma}$ and kinetic data.

Preparation of Pseudotetragonal $ZrO_{0.75}S$ and Its Electric Responses on Temperature and Frequency Related to Microstructural Relaxation

  • Ro, Yeong A;Kim, Seong Jin;Lee, Yu Gyeong;Kim, Ja Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1231-1235
    • /
    • 2001
  • Pseudotetragonal ZrO0.75S whose space group is P212121 was synthesized and the cell dimensions were a=5.110(2) $\AA$, b=5.110(7) $\AA$, and c=5.198(8) $\AA.$ The space group P212121 seems to be resulted from lowering the symmetry of cubic ZrOS structure with P213 space group by lattice distortion due to the oxygen defects. In the distorted structure, bond shortening between metal-nonmetal by reduction of cell volume and alternation of Zr-Zr distance were observed. Dielectric constant and loss data of the bulk material in temperature range -170 to 20 $^{\circ}C$ and frequency range 50 Hz to 1 MHz showed that there was dielectric transition at around -70 $^{\circ}C$ originated from the relaxation of Zr-S segment. Comparing with ZrO2 exhibited the dielectirc constants, 9.0 at room temperature, ZrO0.75S showed high dielectric constant, k = 200.2 at 100 kHz. The activation energy of relaxation time due to dielectric relaxation of Zr-S was 0.47 eV (11.3 kcal/mole). According to the impedance spectra, ZrO0.75S showed more parallel circuit character between the resistance and capacitance components at the temperature (-70 $^{\circ}C)$ that the Zr-S dielectric relaxation was observed.

Investigation on the phonon behavior of MgB2 films via polarized Raman spectra

  • R. P. Putra;J. Y. Oh;G. H. An;H. S. Lee;B. Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • In this study, we explore the anisotropy of electron-phonon coupling (EPC) constant in epitaxially grown MgB2 films on c-axis oriented Al2O3, examining its correlation with the critical temperature (Tc) and local structural disorder assessed through polarized Raman scattering. Analysis of the polarized Raman spectra reveals angle-dependent variations in the intensity of the phonon spectra. The Raman active mode originating from the boron plane, along with two additional phonon modes from the phonon density of states (PDOS) induced by lattice distortion, was distinctly observed. Persistent impurity scattering, likely attributed to oxygen diffusion, was noted at consistent frequencies across all measurement angles. The EPC values derived from the primary Raman active phonon do not significantly vary with changing observation angles, followed by that the Tc values calculated using the Allen and Dynes formula remain relatively constant across all polarization angles. Although the E2g phonon mode plays a crucial role in the EPC mechanism, the determination of Tc values in MgB2 involves not only electron-E2g coupling but also contributions from other phonon modes.

Effects of $Nb_2O_5$, and Oxygen Potential on Sintering Behavior of $UO_2$ Fuel Pellets

  • Song, Kun-Woo;Kim, Keon-Sik;Kang, Ki-Won;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 1999
  • The effects of N $b_2$ $O_{5}$ and oxygen potential on the densification and grain growth of U $O_2$ fuel have been investigated.0.3 wt% N $b_2$ $O_{5}$ -doped U $O_2$fuel pellets were sintered at 1$700^{\circ}C$ for 4 hours in sintering atmospheres which have various ratios of $H_2O$ to $H_2$ gas. Compared with those of undoped U $O_2$ pellets, the sintered density and grain size of the 0.3 wt% N $b_2$ $O_{5}$ -doped U $O_2$ pellet increase under the $H_2O$/ $H_2$ gas ratio of 5.0$\times$10$^{-3}$ to 1.0$\times$10$^{-2}$ and under the $H_2O$/ $H_2$gas ratio of 5.0$\times$10$^{-3}$ to $1.5\times$10$^{-2}$ , respectively. The sintering of U $O_2$fuel pellets containing 0.1 wt% to 0.5 wt% N $b_2$ $O_{5}$ was carried out at 168$0^{\circ}C$ for 4 hours. The enhancing effect of N $b_2$ $O_{5}$ on the sintered density and grain size becomes larger as the N $b_2$ $O_{5}$ content increases. The solubility limit of N $b_2$ $O_{5}$ in U $O_{2}$ seems to be between 0.3 wt% and 0.5 wt%, and beyond the solubility limit the second phase whose composition corresponds near to N $b_2$U $O_{6}$ is precipitated on grain boundary. The enhancement of densification and grain growth in U $O_2$ is attributed to the increased concentration of a uranium vacancy which is formed by the interstitial N $b^{4+}$ ion in the U $O_2$ lattice.

  • PDF

X-ray Powder Diffraction Structural Phase-transition Study of $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$using the Rietveld Method of Analysis (분말 X-선 회절의 리트벨트 해석법을 이용한 $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$계에서의 구조 상전이 특성연구)

  • Jeong, Hun-Taek;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.748-753
    • /
    • 1995
  • Solid solution of NaNb $O_3$70 mol% and SrTi $O_3$30 mol% was single phase. A broad dielectric peak was found at about l00K. Crystal structure was analysed at room temperature and 12K using Rietveld analysis. The unit cell was assigned to have a a doubled lattice parameter of simple perovskite sturcture at room temperatue, the structure was orthorombic with space group Pmmn. At 12K, the structure was also orthorombic with space group Pnma. This structure change with temperature was due to the distortion of oxygen octahedron. This distortion of oxygen octahedron was made by the decrease of (Ti, Nb)-O bounds length with no variation of (Ti, Nb)-O-(Ti, Nb) bound angle. Therefore the broad dielectirc peak about l00K was attributed to the structural change casued by oxygen octahedron distortion.

  • PDF

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.