• 제목/요약/키워드: Latin Hypercube method

검색결과 130건 처리시간 0.022초

Reliability-based approach for fragility assessment of bridges under floods

  • Raj Kamal Arora;Swagata Banerjee
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.311-322
    • /
    • 2023
  • Riverine flood is one of the critical natural threats to river-crossing bridges. As floods are the most-occurred natural hazard worldwide, survival probability of bridges due to floods must be assessed in a speedy but precise manner. In this regard, the paper presents a reliability-based approach for a rapid assessment of failure probability of vulnerable bridge components under floods. This robust method is generic in nature and can be applied to both concrete and steel girder bridges. The developed methodology essentially utilizes limit state performance functions, expressed in terms of capacity and flood demand, for probable failure modes of various vulnerable components of bridges. Advanced First Order Reliability Method (AFORM), Monte Carlo Simulation (MCS), and Latin Hypercube Simulation (LHS) techniques are applied for the purpose of reliability assessment and developing flood fragility curves of bridges in which flow velocity and water height are taken as flood intensity measures. Upon validating the proposed method, it is applied to a case study bridge that experiences the flood scenario of a river in Gujarat, India. Research outcome portrays how effectively and efficiently the proposed reliability-based method can be applied for a quick assessment of flood vulnerability of bridges in any flood-prone region of interest.

Multi-objective optimization application for a coupled light water small modular reactor-combined heat and power cycle (cogeneration) systems

  • Seong Woo Kang;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1654-1666
    • /
    • 2024
  • The goal of this research is to propose a way to maximize small modular reactor (SMR) utilization to gain better market feasibility in support of carbon neutrality. For that purpose, a comprehensive tool was developed, combining off-design thermohydraulic models, economic objective models (levelized cost of electricity, annual profit), non-economic models (saved CO2), a parameter input sampling method (Latin hypercube sampling, LHS), and a multi-objective evolutionary algorithm (Non-dominated Sorting Algorithm-2, NSGA2 method) for optimizing a SMR-combined heat and power cycle (CHP) system design. Considering multiple objectives, it was shown that NSGA2+LHS method can find better optimal solution sets with similar computational costs compared to a conventional weighted sum (WS) method. Out of multiple multi-objective optimal design configurations for a 105 MWe design generation rating, a chosen reference SMR-CHP system resulted in its levelized cost of electricity (LCOE) below $60/MWh for various heat prices, showing economic competitiveness for energy market conditions similar to South Korea. Examined economic feasibility may vary significantly based on CHP heat prices, and extensive consideration of the regional heat market may be required for SMR-CHP regional optimization. Nonetheless, with reasonable heat market prices (e.g. district heating prices comparable to those in Europe and Korea), SMR can still become highly competitive in the energy market if coupled with a CHP system.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

항공기 예비엔진 및 모듈 재고수준이 전시 운용가용도에 미치는 영향 (The Impact of Aircraft Spare Engine and Module Inventory Level on Wartime Operational Availability)

  • 김진호;이상진;정성태
    • 경영과학
    • /
    • 제31권2호
    • /
    • pp.33-48
    • /
    • 2014
  • It is important to maintain on operational availability of aircraft during wartime. The KF-16 fighter, the backbone of the ROKAF (Republic Of Korea Air Force), has a single engine. Therefore, the engine has a critical influence on operational availability. The purpose of this study is to estimate optimal levels of spare part inventories concerning both engines and modules. That is provided by linear programming methods utilizing a developed meta-model. For drawing out the meta-model, we develop a simulation model which can consider wartime demands. In the previous study, $2^k$ factorial design method is used to check the influence of each independent variable. That method requires relatively many scenarios because every extreme value combination of independent variables should be checked. However, this study adopts NOLH (Nearly Orthogonal Latin Hypercube) as an experimental design. By adopting NOLH, this study increases not only efficiency but also accuracy. That is proven by comparing the validity of the developed meta-model on both experimental designs. This study also utilizes the OptQuest simulation tool in ARENA to derive the optimal level of spare stocks. By comparing the result of OptQuest to that of the developed meta-model, the validity of this study is secured.

베이지안 기법을 이용한 중성화에 노출된 콘크리트 구조물의 내구성 예측 (Durability Prediction for Concrete Structures Exposed to Carbonation Using a Bayesian Approach)

  • 정현준;김규선;주민관;이상철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.275-276
    • /
    • 2009
  • 본 논문에서는 중성화에 노출된 콘크리트 구조불의 내구성을 예측하기 위한 새로운 접근 방법을 제시한다. 이 예측 방법은, 새로운 계측 데이터 있을 때 베이스 이론에 근거하여 지속적으로 업데이팅 을 할 수 있다. 모델 매개변수의 확률론적인 특성이 고려된다. 염해 해석 모델의 절차는 라틴 하이퍼 큐브 샘플 추출법으로 간단하게 정리되고 이를 통해 얻는 표본으로 결정된다. 이러한 새로운 방법은 중요한 콘크리트 구조물을 설계하기에 아주 유용하고 모니터링을 통한 실 콘크리트 구조물의 잔존수명을 예측 할 수 있다.

  • PDF

대용량 BLDC 전동기의 영구자석 형상 최적화를 통한 최적화 기법 연구 (A Study on the Optimization Strategy using Permanent Magnet Pole Shape Optimization of a Large Scale BLDC Motor)

  • 우성현;신판석;오진석;공영경;빈재구
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.897-903
    • /
    • 2010
  • This paper presents a response surface method(RSM) with Latin Hypercube Sampling strategy, which is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed LHS algorithm consists of the multi-objective Pareto optimization and (1+1) evolution strategy. The algorithm is compared with the uniform sampling point method in view points of computing time and convergence. In order to verify the developed algorithm, a 6 MW BLDC motor is simulated with 4 design parameters (arc length and 3 variables for magnet) and 4 constraints for minimizing of the cogging torque. The optimization procedure has two stages; the fist is to optimize the arc length of the PM and the second is to optimize the magnet pole shape by using the proposed hybrid algorithm. At the 3rd iteration, an optimal point is obtained, and the cogging torque of the optimized shape is converged to about 14% of the initial one. It means that 3 iterations aregood enough to obtain the optimal design parameters in the program.

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계 (Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System)

  • 백석흠;조석수;주원식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

재료 물성치의 불확실성을 고려한 포장구조체의 건전성 평가 (Integrity Assessment of Asphalt Concrete Pavement System Considering Uncertainties in Material Properties)

  • 이진학;김재민;김영상;문성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.49-54
    • /
    • 2007
  • Structural integrity assessment technique for pavement system is studied considering the uncertainties among the material properties. The artificial neural networks technique is applied for the inverse analysis to estimate the elastic modulus based on the measured deflections from the FWD test. A computer code based on the spectral element method was developed for the accurate and fast analysis of the multi-layered soil structures, and the developed program was used for generating the training and testing patterns for the neural network. Neural networks was applied to estimate the elastic modulus of pavement system using the maximum deflections with and without the uncertainties in the material properties. It was found that the estimation results by the conventiona1 neural networks were very poor when there exist the uncertainties and the estimation results could be significantly improved by adopting the proposed method for generating training patterns considering the uncertainties among material properties.

  • PDF