• Title/Summary/Keyword: Lateral vibration

Search Result 491, Processing Time 0.022 seconds

Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 굽힘 진동해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.891-898
    • /
    • 1992
  • When catilever beams rotate about axes perpendicular to the underformed beam's longitudinal axis, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the lateral motion of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the lateral motion of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation. This technique is simpler and more consistent than other conventional techniques which are commonly used in the literature.

Analysis on Running Safety for KTX Vehicle (KTX차량의 주행 안전성 해석)

  • Kim, Jae-Chul;Ham, Young-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.473-479
    • /
    • 2007
  • Lateral vibration at the tail of KTX train was found during the acceptance test. In order to settle the problem of lateral vibration, the wheel conicity was changed 1/40 to 1/20. However, we should evaluate the running safety of vehicle with 1/20 wheel conicity because modification of wheel conicity may cause the running performance to be worse and critical speed to reduce. In this paper, we calculate critical speed of KTX bogie as wheel conicity increase and analyze the running safety for KTX that has 20 car trainset formation using VAMPIRE. and compare with the test results of KHST to validate analysis results on high speed line. A analysis results show that critical speed of 0.3 wheel conicity is over 375km/h and curving performance of 1/20wheel conicity is better than 1/40. Also, we examinate the running performance of KTX to check out possibility to increase speed of KTX on conventional line. A analysis results show that it is possible to increase up to 10% the speed of KTX on tangent line but KTX on a curved line should be operated with the speed of conventional train.

Analysis on the Dynamic Behavior according to Suspension Structure of the Urban Railway Vehicle (전동차 현가구조에 따른 동적거동특성 분석)

  • Hur, Hyun-Moo;Noh, Hak Rak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.617-623
    • /
    • 2020
  • Urban railroad vehicles carry many passengers and are the core of an urban railroad transportation system. Therefore, the dynamic performance of the vehicle must be ensured. Dynamic behaviors such as the vibration and ride comfort of railway vehicles are affected by the structure of the suspension system. We analyzed the dynamic behavior of a railway vehicle according to the suspension system of an urban railway vehicle, which is mainly operated in Korea. For two types of vehicles with different suspension structures, the vibration of the vehicles on railway tracks was measured, and dynamic behavior characteristics such as vibration, ride, and vibration reduction rate were analyzed. The result of the test shows that the vibration performance of the body is superior to that of B-bogie in the lateral direction and that of A-bogie in the vertical direction. Overall, the ride quality of the A-bogie car is superior to that of B-bogie. When analyzing the vibration attenuation rate of primary suspension system, the vibration attenuation performance of B-bogie with coil spring was superior to that of A-bogie with a conical rubber spring. The secondary suspension system has better vibration attenuation performance for A-bogie with air springs compared to coil springs.

A Study on the Vibration Characteristics of Subway Structure by Train Load (열차 하중에 의한 지하철 구조물의 진동 특성에 관한 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • In this study, the vibration analysis of the underground box structures induced train movement is studied. In order to perform these analysis, dynamic data, which was measured when subway is in service, are gained by attaching accelerometers on the structure such as lower beam, lateral wall and upper slab. Also, accelerometers are attached on the lower beams and side walls of the gravel ballast and concrete ballast sections in order to compare vibration due to ballast materials. The vibration results of upper slabs and lower beams reveal that the vibration on the upper slabs is greater than the lower beams. Also, the results of the crack gauge on the upper slab show that crack width dose not change due to vibration, These means that the effect of the vibration on the structure is very limited. In order to evaluate the vibration of the structure, acceleration unit is converted to velocity unit comparing with the existing velocity data gained from the platforms.

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(II) - Focused on the Behavior of Tower - (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(II) - 주탑의 거동을 중심으로 -)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.269-275
    • /
    • 1997
  • Wind tunnel test results and their interpretations, which were performed to study the aerodynamic stability of tower of self-anchored suspension bridge, are presented in this paper. Tower and full models were tested under smooth and turbulent flow conditions. In the case of the tower with inclined two columns, the vibration due to wakes were occurred at wide velocity zone because the wakes with various frequencies were generated by inclined upstream column. It has to be emphasized that the vibration characteristics of the tower in the self-anchored suspension bridge may be very sensitive to the longitudinal boundary conditions of the girder at the supports. Because of the two natural frequency of the tower, out-of-plane bending and torsional, were not well separated, coupled motions were observed in a wide range of wind velocity. The effectiveness of corner cut, countermeasure to reduce the tower vibrations, was also studied. It has been found that 1:10, comer cut size to column width, may be the most effective ratio for reducing the vibrations.

  • PDF

Probabilistic Analysis of Coupled Axial and Torsional Vibration of Marine Diesel Propulsion Shafting System (선박디젤추진축계 종.비틂연성진동의 확률적 해석)

  • S.Y. Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.71-78
    • /
    • 1998
  • Recently, modern long-stroke diesel engines with small number of cylinders have been installed for energy saving and simpler maintenance. These kinds of low speed diesel engine produce large torsional vibration in the shafting, which induces the excessive vibratory stresses in the shafting and large propeller thrust variation. This thrust variation excites vibrations of the shafting and superstructure in the longitudinal direction. Up to now the deteriministic analysis of coupled vibration of marine shafting system has been performed. In this paper probabilistic analysis method of the marine diesel propulsion shafting system under coupled axial and torsional vibrations is presented. For the purpose of this work, the torsional and axial vibration excitations of engine and propeller are assumed to be probabilistic while the lateral excitation is assumed to be deterministic. The probabilistic analysis is based on a response surface and Monte-Carlo simulation. Numerical results based on the proposed method are compared with results calculated using the conventional deterministic analysis method. The results obtained make it clear that the proposed method gives a substantial increase in information about shafting behaviour as compared with the deterministic method.

  • PDF

Measurement and Analysis of Physical Environmental Load during Handling and Distribution of Domestic Fruits -Focused on Seongju Korean Melon

  • Jongmin Park;Donghyun Kim;Wontae Seo;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • The proportion of agricultural products handled through the Agricultural Products Processing Center (APC) is also steadily increasing every year, and in the case of Seongju Korean melon, a total of 10 APCs of Nonghyup and farming association corporations are in operation, and the distribution ratio is about 60% based on total production. In this study, Seongju Korean melon was selected as a target to analyze the environment load during carrying (production farm ~ APC) in the production area and the transport environment load during distribution of domestic fruits, and to analyze the environmental load for handling at APC. The vertical average vibration intensity (overall Grms of 1~250 Hz) of truck transport measured at three transport routes from Seongju Korean melon producer ~ APC, Seongju ~ Seoul and Seongju ~ Jeju was about three times larger than that in the lateral direction and 4.5 times larger than that in the longitudinal direction, respectively. The frequency of occurrence of high-amplitude events (G) in the vertical direction compared to the measuring time was deeply related to pavement conditions in the order of unpaved farm-roads, concretepaved farm-roads, and asphalt-paved main-roads, but overall Grms for the entire frequency band is believed to have a greater impact on vehicle traveling speed than road conditions. On the other hand, the difference in the size and direction of the vibration intensity measured by the forklift truck's main-body and the attachment (fork carrier) during handling at Seongju Korean melon APC was clear, and the vibration intensity of the forklift truck's main-body was largely affected by the stiffness of the fork and the mast according to the handling weight. Based on the field-data of the transport environment during domestic distribution measured through this study, it is believed that it is possible to develop a lab-based simulation protocol for appropriate packaging design.

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

Considerations for Seismic Design of Low-Rise Residential Bearing Wall Buildings with Pilotis (필로티형 저층 내력벽주택의 내진설계 고려사항)

  • Lee, Seung Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • In this study, the results of an analytical investigation on the seismic behavior of two residential 4-story bearing wall buildings with pilotis, each of which has symmetric or unsymmetric wall arrangement at their piloti level, are presented. The dynamic characteristics and lateral resistance of the piloti buildings were investigated through linear elastic and nonlinear static analyses. According to the results, the analytical natural period of vibration of the piloti buildings were significantly shorter than the fundamental period calculated in accordance with KBC 2016. In the initial elastic behavior, the walls resisting in-plane shear contributed to the lateral stiffness and strength, while the contribution of columns resisting flexural moments in double curvature was limited. However, after the shear cracking and yielding of the walls occurred, the columns significantly contributed to the residual strength and ductility. Based on those investigations, design recommendations of low-rise bearing wall buildings with piloti configuration are given.