• Title/Summary/Keyword: Lateral steel plate

검색결과 164건 처리시간 0.024초

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.

조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도 (Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling)

  • 신동구;조은영
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.399-409
    • /
    • 2012
  • 비세장 복부판을 갖고 균일모멘트를 받는 HSB 강재가 적용된 플레이트거더의 비탄성 횡비틀림좌굴 영역 휨강도 특성을 비선형 유한요소해석으로 분석하였다. HSB600 및 HSB800 강재로 제작된 균질단면 강거더와 HSB800 강재와 SM570-TMC 강재를 함께 적용한 하이브리드단면 거더를 고려하였으며, 일반강재와의 상대 비교를 위하여 SM490-TMC 강거더에 대한 해석도 수행하였다. 해석대상 비합성 I-거더 단면의 플랜지와 복부판을 쉘요소로 모델링하고 ABAQUS 프로그램을 이용하여 재료 및 기하학적 비선형 유한요소해석을 수행하였다. 강재는 탄소성-변형경화 재료로 모델링하였고 초기변형과 단면의 잔류응력을 고려하였으며, 이들이 비탄성 횡비틀림좌굴 영역에서 휨거동에 미치는 영향을 분석하였다. HSB 고강도강을 적용한 플레이트거더의 FE 해석과 한계상태법 도로교설계기준, AASHTO LRFD, Eurocode 등 국내외 주요 설계기준에 의한 공칭휨강도와 비교하고 이들 설계기준을 평가하였다.

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.29-46
    • /
    • 2020
  • In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.

복합플레이트로 보강된 RC 기둥의 내진성능에 대한 연구 (An Experimental Comparison Study on the Strength and Earthquake-resistant Capacity of Reinforced Concrete Columns Retrofitted with Fiber-Steel Composite Plate)

  • 박태만;박원수;박성민;윤정배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.724-729
    • /
    • 2004
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted with Fiber-Steel Composite Plate, compared with Steel Plate, and Carbon Fiber Sheet. Test specimens strengthened with 3 different materials--- carbon fiber sheet, steel plate and fiber-steel composite plate --- were tested under cyclic lateral force and a constant axial load equal to $20\%$ of the column's axial load capacity. The hypothetical equivalent value of the strengthening among three materials is introduced to evaluate.

  • PDF

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

리브로 보강한 전단 항복형 강판벽의 거동 (Behavior of Shear Yielding Thin Steel Plate Wall with Tib)

  • 윤명호;위지은;이명호;오상훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.503-511
    • /
    • 2001
  • 건물의 내진성을 향상시키는 방법으로 전단벽과 가새 등의 내진요소가 사용된다. 대부분 철근콘크리트 건물에서는 철근콘크리트 전단벽이 철골건물에서는 철골가새가 내진요소로 사용이 되고 있다. 그러나 철근콘크리트 전단벽은 시공이 어렵고 원하는 소성 영역에서 연성(ductility)과 에너지 흡수능력을 만족시키기 어렵다. 강도와 강성이 매우 높고 연성이 우수하며, 자중이 작아서 전단벽의 재료로서 적합하다고 판단된다. 안정적인 거동을 하도록 박강판의 양면에 리브판을 보강하는 방법을 채택하였다. 실험은 강판벽의 폭높이비(D/H) 리브보강형태, 재하이력 등을 변수로 하여 수행하였다. 실험결과로 부터 강판벽의 제반 복원력특성을 분석 고찰하였다.

  • PDF

2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가 (The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges)

  • 배두병;조준희
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Lateral performance of CRCS connections with tube plate

  • Jafari, Rahman;Attari, Nader K.A.;Nikkhoo, Ali;Alizadeh, Saeid
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.37-57
    • /
    • 2019
  • This paper presents experimental and analytical studies to evaluate the cyclic behaviour of Circular Reinforced Concrete column Steel beam (CRCS) connections. Two 3/4-scale CRCS specimens are tested under quasi-static reversed cyclic loading. Specimens were strengthened with a tube plate (TP) and a steel doubler plate (SDP). Furthermore; nine interior beam-through type RCS connections are simulated using nonlinear three-dimensional finite element method using ABAQUS software and are verified with experimental results. The results revealed that using the TP improves the performance of the panel zone by providing better confinement to the concrete. Utilizing the TP at the panel zone may absorb and distribute stress in this region. Results demonstrate that TP can be used instead of SDP. Test records indicate that specimens with TP, with and without SDP maintained their maximum strength up to 4% drift angle, satisfying the recommendation given by AISC341-2016 for composite special moment-resisting frames.

무보강 강판 전단벽의 비선형 해석 (A Nonlinear Analysis of Un-stiffened Steel Shear Wall)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제3권2호
    • /
    • pp.47-54
    • /
    • 2003
  • A Steel plate shear wall can be used as one of the lateral force resistant elements in buildings. It have many advantages from a structural point of view such as ductility, energy absorption capacity and initial stiffness etc. In this study to grasp the behavior of steel plate shear wall considering material and geometrical non-linearity, the FEM analyses were carried out using ANSYS(ver. 5.6) program. The analysis results were fully discussed and compared with test results to verify the validity of analysis method. The object of this study is to find out analytically the elasto-plastic behavior of un-stiffened steel plate shear wall.

  • PDF