• Title/Summary/Keyword: Lateral long term behavior

Search Result 28, Processing Time 0.034 seconds

Suspended Columns for Seismic Isolation in Structures (SCSI): A preliminary analytical study

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.743-755
    • /
    • 2019
  • In this paper, a new system of seismic isolation for buildings - called suspended columns - is introduced. In this method, the building columns are placed on the hinged cradle seats instead of direct connection to the foundation. In this system, each of the columns is put on a seat hung from its surrounding area by a number of cables, for which cavities are created inside the foundation around the columns. Inside these cavities, the tensile cables are hung. Because of the flexibility of the cables, the suspended seats vibrate during an earthquake and as a result, there is less acceleration in the structure than the foundation. A Matlab code was written to analyze and investigate the response of the system against the earthquake excitations. The findings showed that if this system is used in a building, it results in a significant reduction in the acceleration applied to the structure. A shear key system was used to control the structure for service and lateral weak loads. Moreover, the effect of vertical acceleration on the seismic behavior of the system was also investigated. Effect of the earthquake characteristic period on the system performance was studied and the optimum length of the suspension cables for a variety of the period ranges was suggested. In addition, measures have been taken for long-term functioning of the system and some practical feasibility features were also discussed. Finally, the advantages and limitations of the system were discussed and compared with the other common methods of seismic isolation.

Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models

  • Yeghnem, Redha;Guerroudj, Hicham Zakaria;Amar, Lemya Hanifi Hachemi;Meftah, Sid Ahmed;Benyoucef, Samir;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.579-588
    • /
    • 2017
  • Creep and shrinkage are the main types of volume change with time in concrete. These changes cause deflection, cracking and stresses that affect durability, serviceability, long-term reliability and structural integrity of civil engineering infrastructure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) plates, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by three commonly used international "code type" models. The assessed are the: CEB-FIP MC 90 model, ACI 209 model and Bazant & Baweja (B3) model. The time-dependent behavior was investigated to analyze their seismic behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to demonstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements and eigenfrequencies modes.

A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds (점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구)

  • You, Kwangho;Jung, Suntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2019
  • Mechanized constructions have been frequently increased in soft ground below sea bed or river bed, for urban tunnel construction, and for underpinning the lower part of major structures in order to construct a safer tunnel considering various risk factors during the tunnel construction. However, it is difficult to estimate the subsidence behavior of the ground surface due to excavation and needs to be easily predicted. Thus, in this study, when a twin tunnel is constructed in the soft ground, it is proposed a simpler equation relating to the settlement behavior and a corrected formula applicable to soft ground and large diameter shield tunnels based on the previously proposed theory by Peck (1969). For this purpose, it was analyzed to long-term measurement values such as the amount of maximum settlement, the subsidence range by ground conditions, and interference volume loss due to the parallel construction, etc. As a result, a equation was suggested to predict the amount of maximum settlement in the soft sediment clay ground where is located at the upper part of the excavation site. It is turned out that the proposed equation is more suitable for measurement data in Korea than Peck (1969)'s.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

Studies on Evaluation for Long-Term Structural Performance of Pinus densiflora Sieb. et Zucc. (I) -Shear Creep and Mechano-Sorptive Behavior of Drift Pin Jointed Lumber-

  • Hong, Soon-Il;Park, Jun-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to evaluate the mechano-sorptive deflection of shear creep of drift pin jointed solid wood. Specimens were the solid wood of Pinus densiflora. The joint was composed with steel plate and drift pin, 85mm in length and 10mm in diameter. The creep tests were conducted under the constant loads in an variable environment. Five different shearing loads were applied parallel to the grain of specimens. The shearing loads applied were 170, 340, 510, 680 and 850 kgf. The stress levels were 10, 20, and 30, 40 and 50% of the bearing strength obtained from the tension-type lateral strength test. The creep tests for specimens were carried out for 10300 hours. A few general conclusions could be drawn from this study: The mechano-sorptive deflection (${\delta}$ ms) is defined as ${\delta}\;ms={\delta}\;t-({\delta}\;c+{\delta}\;sh)-{\delta}\;o$, where ${\delta}$ t is the total deflection, ${\delta}$ c is the pure creep, ${\delta}$ sh is shrinkage-swelling behavior, and ${\delta}$ o is the initial deflection. Changes of relative humidity may cause more severe creep deflection than those of constant humidity, especially during the drying process. The mechano-sorptive behaviors of specimens, except the effects of shrinkage and swelling, gradually increased with increasing time. The deflection is increased in desorption process and recovered in adsorption process. The deflections of drift pin jointed solid wood under different loads showed almost same tendency in all specimens. Although the creep deflection tendencies of each series are very similar, the specimens subjected to a large shearing load exhibit large creep deflections in the desorption process than do those to the small shearing load specimens.

A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap (Steel Strap으로 횡구속된 무철근 바닥판의 정적 및 피로거동 특성 연구)

  • Jo, Byung Wan;Kim, Cheol Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.137-147
    • /
    • 2012
  • In the steel-free bridge concrete deck, steel straps are generally used instead of conventional steel rebar while laterally restrained in the perpendicular direction to the traffic in order fir the arching effect of concrete deck. In this paper, the minimum amount of FRP bar is to be suggested based on the structural strength, crack propagation, stress level and others in order to control cracks. As a result of laboratory tests, the structural strength of deck with 0.15 percentage of steel strap showed improved structural strength including ductility. The long-term serviceability of steel strap deck with FRP bar proved to satisfy the requirements and to be structurally stable while showing the amount of crack and residual vertical displacement within the allowable limits after two million cyclic loadings. The structural failure of RC bridge deck is generally caused from the punching shear rather than moment. Therefore, the ultimate load at failure could be estimated using the shear strength formula in the two-way slab based on ACI and AASHTO criteria. However the design criteria tend to underestimate the shear strength since they don't consider the arching effects and nonlinear fracture in bridge deck with lateral confinement. In this paper, an equation to estimate the punching shear strength of steel strap deck is to be developed considering the actual failure geometries and effect of lateral confinement by strap while the results are verified in accordance with laboratory tests.

Expression of Dopamine D2 Receptor in Response to Apomorphine Treatment in the Striatum of the Rat with Experimentally Induced Parkinsonism (파킨슨병 모형 흰쥐의 줄무늬체에서 Apomorphine 투여 방법에 따른 도파민 D2 수용체의 발현)

  • Choi, Seung Jin;Sung, Jae Hoon;Son, Byung Chul;Park, Choon Keun;Kwon, Sung Oh;Kim, Moon Chan;Lee, Sang Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.868-876
    • /
    • 2000
  • Objective : Parkinsonian rat models have generally been characterized by unilateral destruction of both the nigrostriatal pathway and the mesolimbic pathway using the neurotoxin 6-hydroxydopamine. The induction of contraversive turning by apomorphine in these models is thought to reflect the stimulation of supersensitive dopamine D2 receptor or receptor-mediated mechanisms in denervated neostriatum. The present study was undertaken to investigate the expression of dopamine D2 receptor in denervated striatum according to modalities of apomorphine(dopamine agonist) treatment after creating a hemiparkinsonian rat model in which there is 6-hydroxydopamine induced destruction of the unilateral dopaminergic nigrostriatal pathway. Methods : After making complete lesion in left side substantia nigra pars compacta(SNpc) by stereotactic injection of 6-hydroxydopamine into medial and lateral areas of SNpc, and confirming successful animal model by apomorphine induced contraversive turning behavior without recovery and complete destruction of ipsilateral SNpc with tyrosine hydroxylase immunostaining in 7th day after operation, 15 rats of parkinsonian model were studied with or without administration of apomorphine at varying doses and durations. According to the modalities of apomorphine treatment for 4 days, these rats were divided into 3 groups, as not-treated group, intermittently treated group and constantly treated group. For investigating the extent of the expression of dopamine D2 receptor in denervated striatum, immunohistochemical staining by dopamine D2 receptor antibody and Western blot were performed. Results : In the D2 receptor antibody immunohistochemical staining, the mean number of positive stained neurons was highest in not-treated group($20.5{\pm}1.14$) of 3 groups. In constantly treated group, the mean number of positive stained neurons was less($3.9{\pm}1.79$) than intermittently treated group(p<0.05). The Western blotting with the D2 receptor antibody revealed that expression of receptors was also highest in not-treated group and less in constantiy treated group than intermittently treated group. Conclusion : Dopamine D2 receptors in denervated striatum of parkinsonian rat models, which were not treated with apomorphine, revealed to be most highly expressed. And, according to doses and durations of apomorphine administration, desensitization of the receptor was more apt to develop with constant treatment than intermittent treatment. In clinical setting, the authors believe that, in long-term treated parkinsonian patients, desensitization of dopamine receptors due to chronic dopaminergic stimulation seems to be partially related to mechanisms of drug tolerance.

  • PDF

Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers

  • Lee, Y.;Bok, J.D.;Lee, H.J.;Lee, H.G.;Kim, D.;Lee, I.;Kang, S.K.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.299-306
    • /
    • 2016
  • Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean${\pm}$standard deviation [SD], $37.1^{\circ}C$ to $37.36^{\circ}C{\pm}0.91^{\circ}C$ to $1.02^{\circ}C$). STs are $1.39^{\circ}C$ to $1.65^{\circ}C$ lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below $36.5^{\circ}C$ or $37^{\circ}C$, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below $36.5^{\circ}C$ or $37^{\circ}C$ resulting in a much improved mean${\pm}$SD of $37.6^{\circ}C{\pm}0.64^{\circ}C$ or $37.8^{\circ}C{\pm}0.55^{\circ}C$, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.