• Title/Summary/Keyword: Lateral long term behavior

Search Result 28, Processing Time 0.022 seconds

Lateral long term behavior for web direction of Driven H-Piles in Embankment (성토지반에 타입된 H 말뚝의 약축방향에 대한 횡방향 장기지지거동)

  • 박영호;정경자;김낙영;황영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.43-56
    • /
    • 2002
  • To find a lateral long term behavior of driven H-piles in embankment, inclinometer is installed at pile and measurement is done during a year. When behavior of measured slope angles is in accord with behavior of nonlinear p-y curves(Reese, Murchison and O'Neil, Matlock's p-y analysis), maximum displacement of pile head, maximum stress and maximum bending moment of pile obtained from the numerical analysis are shown. As results, maximum lateral displacement at pile head, maximum stress and maximum bending moment of pile are shown linear behavior, And maximum lateral load, maximum lateral displacement, and maximum bending moment at pile obtained from the numerical analysis are 8∼12.4tonf, 9∼10.1㎜, and 10.39∼12.67tonf-m per pile according to the curves, respectively.

  • PDF

Lateral long term behavior of Driven H-Piles in Embankment (성토지반에 타입된 H 말뚝의 횡방향 장기지지거동)

  • 박영호;정경자;김주경;김동인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.575-582
    • /
    • 2002
  • To find a lateral long term behavior of driven H-piles in embankment, inclinometer is installed at pile and measurement is done during a year. When behavior of measured slope angles is in accord with behavior of nonlinear p-y curves(Reese, Murchison and O'Neil, Matlock's p-y analysis), maximum displacement of pile head, maximum stresses and maximum bending of pile obtained from the numerical analysis are shown. As results, maximum lateral displacement at pile head, maximum stress and maximum bending moment of pile are shown linear behavior. And maximum lateral load, maximum lateral displacement, and maximum bending moment at pile head obtained from the numerical analysis are 8∼12.4tonf, 9∼10.1mm, and 10.39∼12.67tonf-m per pile according to the curves, respectively.

  • PDF

Long-term Behavior Characteristics of Backfilled Ground by EPS (EPS로 뒷채움된 지반의 장기거동특성)

  • Chun, Byung-Sik;Jung, Chang-Hee;Choi, Hui-Rim
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.151-161
    • /
    • 2007
  • EPS provides a superb self-sufficient stability. Studies on the process of EPS construction method focus on the inchoate phase of general construction, which is increasingly applied to construction sites throughout the world. Unfortunately, there has been little study on the durability and long-term soil behavior involving EPS materials. In this study, the boring, in-site and laboratory tests were conducted to examine the long-term soil behavior in the back-filling of alternating behind the side to which EPS was applied. And results of finite element analysis considering various test results and the soil behavior data measured during the construction show that EPS construction method is a superb process that relieves the load and consequently reduces the settlement, alleviates the stress on the abutment, and prevents lateral flow.

Experimental Evaluation of Construction Performance and Long-term Settlements in Soft Ground Breakwater (연약지반 방파제의 시공성능 및 장기침하에 관한 실험적 평가)

  • Kwon, O-Soon;Jang, In-Sung;Park, Woo-Sun;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.385-392
    • /
    • 2003
  • A new type of soft ground breakwater was recently developed, which does not need ground improvement because of light weight and structural characteristics. The various studies about consolidation settlements and lateral behavior of proposed soft ground breakwater have been conducted. But, the systematic investigations on the construction performance and long-term settlements of new type breakwater has not been accomplished. In this study, construction simulation of soft ground breakwater with soil box model test and experiments of the long-term wave loaded breakwater were performed. The results of test shows that it is possible to compensate differential settlements by dead loading and/or suction pressure, and to reduce the consolidation settlements by preloading method. It was also found that the vertical and lateral displacements of long-term wave loaded breakwater were negligible.

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

Long term earth pressure behavior behind stub abutment (난쟁이 교대배면의 장기 토압거동)

  • 박영호;정경자;김낙영;황영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.779-786
    • /
    • 2002
  • To find a long term horizontal movement of superstructure caused by seasonal thermal change, several types of gages are installed such as soil earth pressuremeter behind stub abutment and jointmeter between approach slab and relief slab. As results, maximum passive earth pressure behind integral bridge abutments centerline with lateral movement of superstructure is about 1/6 of classic Rankine's earth pressure. And its distribution is not triangular but rectangular shape due to shape behind integral bridge abutments.

  • PDF

Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall (계단식 지오그리드 보강토 옹벽의 계측)

  • 유충식;정혁상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF

Behavior of a Reinforced Retaining Wall During Construction (보강토의 시공중 거동 평가)

  • 노한성;최영철;백종은;김영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-100
    • /
    • 2000
  • When compared with conventional retaining wall system, there are many advantages to reinforced soil such as cost effectiveness, flexibility and so on. The use of reinforced soil have been increased in the last 17 years in Korea. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the behavior of reinforcing system. The results of soil pressure and strain of reinforcement during construction are described. The influence of compaction on soil pressure and strain of reinforcement is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure depends on the installation condition of pressure cell and construction condition. It is also observed that maximum tensile strains of reinforcement are located on 50cm to 150cm from the wall. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress in the reinforcement

  • PDF

Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems (120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. The differential axial shortening can cause challenges in the serviceability and safety of non-structural and structural elements, respectively. Hence, in this study, the differential axial shortening of the vertical elements and effects of long term behaviors of concrete are analyzed in 120-story high-rise buildings via the construction sequence analysis. Consequently, the axial shortening of the vertical elements is classified into elastic, creep, and shrinkage shortening, and dominant factors to the maximum axial shortening are analyzed. In addition, the serviceability of the non -structural elements is checked with a differential axial shortening at 30 years after completion of construction, and member forces at design and construction stages in girders and outrigger walls are compared.

Analysis of Slope Behavior Using TDR Sensor (TDR센서를 이용한 사면거동 해석)

  • Park, Min-Cheol;Lee, Jae-Ho;Han, Heui-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.79-86
    • /
    • 2010
  • In this paper, using soil slope inclinometer observations of lateral flow is used as a traditional way, but there are some decisions. Inclinometers in the process of installing and monitoring is costly. Severe incline slope of the lateral flow is observed in the inefficient. As a solution for it using TDR sensors are used to. Metal conductors such as coaxial cable and general cable uses a measurement sensor can be installed on site at a lower cost and slope measurements are available for long-term monitoring. When TDR sensor is installed on the slopes, changes in the behavior of slopes causes the earth pressure. TDR sensors determine the change of earth pressure and tried to analyze the behavior of slopes.

  • PDF