• Title/Summary/Keyword: Lateral instability

검색결과 268건 처리시간 0.03초

Spontaneous Recanalization from Traumatic Internal Carotid Artery Occlusion

  • Kim, Young-Sung;Yoon, Seung-Hwan;Kim, Eun-Young;Park, Hyeon-Seon
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권2호
    • /
    • pp.125-128
    • /
    • 2007
  • The incidence of spontaneous recanalization after traumatic internal carotid artery occlusion is very rare. We have experienced a case of spontaneous recanalization after a traumatic internal carotid artery occlusion. A 5-year-old boy developed contra-lateral hemiparesis and dysphasia after a blunt injury on the head and neck. He had a complete left internal carotid artery occlusion which was diagnosed through angiography. We treated the patient with an anti platelet agent and rehabilitation. Six months later, he regained motor power of right extremities, language ability, and revisualization of internal carotid artery on the follow-up magnetic angiography. We confirmed a recanalization of injured internal carotid artery on the conventional cerebral angiography which was performed one year later. We suggest conservative treatment with serial angiographic studies as a possible option of traumatic internal carotid artery occlusion even though there is hemodynamic instability.

Monte-Carlo 시뮬레이션을 이용한 확률적 차량동역학 해석 (Stochastic Analysis for Vehicle Dynamics using the Monte-Carlo Simulation)

  • 탁태오;주재훈
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.3-12
    • /
    • 2002
  • Monte-Carlo simulation technique has advantages over deterministic simulation in various engineering analysis since Monte-Carlo simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation of steady-state cornering behavior of a truck with design variables like hard points and busing stiffness. The purpose of the simulation is to improve understeer gradient of the truck, which exhibits a small amount of instability when the lateral acceleration is about 0.4g. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Identification of eighteen flutter derivatives of an airfoil and a bridge deck

  • Chowdhury, Arindam Gan;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2004
  • Wind tunnel experiments are often performed for the identification of aeroelastic parameters known as flutter derivatives that are necessary for the prediction of flutter instability for flexible structures. Experimental determination of all the eighteen flutter derivatives for a section model facilitates complete understanding of the physical mechanism of flutter. However, work in the field of identifying all the eighteen flutter derivatives using section models with all three degree-of-freedom (DOF) has been limited. In the current paper, all eighteen flutter derivatives for a streamlined bridge deck and an airfoil section model were identified by using a new system identification technique, namely, Iterative Least Squares (ILS) approach. Flutter derivatives of the current bridge and the Tsurumi bridge are compared. Flutter derivatives related to the lateral DOF have been emphasized. Pseudo-steady theory for predicting some of the flutter derivatives is verified by comparing with experimental data. The three-DOF suspension system and the electromagnetic system for providing the initial conditions for free-vibration of the section model are also discussed.

인력물자취급작업시 작업 대상물의 위치가 신체자세동요에 미치는 영향 (Effects of Material Position on Postural Stability during Manual Material Handling Tasks)

  • 박재규;박성하
    • 대한인간공학회지
    • /
    • 제23권4호
    • /
    • pp.1-8
    • /
    • 2004
  • The objective of this study is to identify the effects of material position and physical fatigue on postural stability. Ten male subjects participated in this study. After bicycling exercises, their centers of pressure (COPs) were measured under four material handling positions and four excercise levels. The measured COPs were then utilized to calculate postural sway length in each experimental condition. Subjects' postural stability was quantified using the sway length. Results showed that the effect of different material handling position was significant on the postural sway length in both the posterior-anterior axis and the medio-lateral axis. Results also showed that the postural sway length was increased as physical fatigue accumulated, significantly in subject's posterior-anterior axis. The results imply that bearing a material on the back or front with both hands appeared to cause least sway length and instability.

분기 모우드를 활용한 얇은 빔의 혼돈 역학에 관한 연구 (On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode)

  • 이영섭;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.121-128
    • /
    • 1995
  • The results are summarized as what follows: 1) The modeling of thin beams, which is a continuous system, into a two DOF system yields satisfactory results for the chaotic vibrations. 2) The concept of "natural forcing function" derived from the eigenfunction of the bifurcation mode is very useful for the natural responses of the system. 3) Among the perturbation techniques, HBM is a good estimate for the response when the geometry of motion is known. 4) It is known that there exist periodic solutions of coupled mode response for somewhat large damping and forcing amplitude, as well as weak damping and forcing. 5) The route-to-chaos related with lateral instability in thin beams is composed of period-doubling and quasiperiodic process and finally follows discontinuous period-doubling process. 6) The chaotic vibrations are verified by using Poincare maps, FFT's, time responses, trajectories in the configuration space, and the very powerful technique Lyapunov characteristics exponents.exponents.

  • PDF

Tractor-Semitrailer 차량의 제동특성 프로그램 개발 (A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle)

  • 서명원;박윤기;권성진;양승환;박병철
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.152-167
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and when the road is wet or slippery. Under these conditions, the truck can spin out or the tractor can jackknife or the trailer can swing out. To design the air brake system for the commercial vehicle, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about the tractor-semitrailer and the air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the program. Designers can use this simulation program for understanding the braking characteristics such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

무인자동안내방적 경량전철 시스템의 동특성에 관한 연구 (Dynamic Characteristics of Automated Guideway Transit (AGT) Vehicles)

  • 송창민;이우식
    • 한국철도학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper, the dynamics and stability of the automated guideway transit (AGT) vehicles with rubber tires are investigated. Two types of AGT systems are considered: the bogie-type and steering-type systems. The critical speeds for the dynamic instability of lateral and yawing motions are investigated by use of the Routh-Hurwitz's stability criterion. It is shown that the bogie-type AGT vehicles are likely to be stable within the range of practical operating speed, whereas it is not true for the steering-type AGT vehicles. It is also shown that the control performance of steering-type AGT vehicles can be improved by choosing proper steering gains of the closed-loop steering control system.

  • PDF

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어 (Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect)

  • 이상덕;정슬
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

Local TIGRESS Simulations of Star Formation in Spiral Galaxies

  • Kim, Woong-Tae;Kim, Chang-Goo;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.51.1-51.1
    • /
    • 2021
  • Spiral arms greatly affect gas flows and star formation in disk galaxies. We use local 3D simulations of vertically-stratified, self-gravitating, gaseous disks under a stellar spiral potential to study the effects of spiral arms on galactic star formation as well as formation of gaseous spurs/feathers. We adopt the TIGRESS framework to handle radiative heating and cooling, star formation, and ensuing supernova (SN) feedback. We find that more than 90% of star formation takes place inside spiral arms. The global star formation rate (SFR) in models with spiral arms is enhanced by less than a factor of 2 compared to the no-arm counterpart. This supports the picture that spiral arms do not trigger star formation but rather redistribute star-forming regions. Correlated SN feedback produces interarm feathers in both magnetized and unmagnetized models. These feathers live short, have parallel magnetic fields along their length, and are bounded by SN feedback in the lateral direction, in contrast to instability-induced feathers formed in our previous isothermal simulations.

  • PDF