• 제목/요약/키워드: Lateral instability

검색결과 266건 처리시간 0.025초

만성 외측 발목 불안정증의 수술적 치료 (Surgical Procedures for Chronic Lateral Ankle Instability)

  • 양기원;이홍섭;황지선
    • 대한족부족관절학회지
    • /
    • 제25권1호
    • /
    • pp.17-24
    • /
    • 2021
  • Surgical treatments for chronic lateral ankle instability include anatomic repair, anatomic reconstruction using an auto or allograft, non-anatomic reconstruction, and arthroscopic repair. Open anatomic repair using the native ligament with or without reinforcement of the inferior extensor retinaculum is commonly performed in patients with sufficient ligament quality. Non-anatomical reconstruction using the adjacent peroneus brevis tendon is typically used only in patients with poor-quality ligament remnants or when previous repair failed. Anatomical reconstruction can be considered in patients in whom anatomical repair is expected to fail and when performed using auto or allografts can provide good to excellent short-term results, although the long-term outcomes of these methods remain unclear. Arthroscopic repair can provide good to excellent short-term clinical outcomes, but evidence supporting this technique is limited. The advantages and disadvantages of various surgical methods should be compared, and appropriate treatment should be implemented based on patient characteristics.

Effects of Kinesio Taping and Massage Application to Calf Muscle on Ankle Stability

  • Kim, Chan-Woo;Roh, Hyo-Lyun
    • 대한물리의학회지
    • /
    • 제13권4호
    • /
    • pp.35-42
    • /
    • 2018
  • PURPOSE: This study was conducted to investigate the effects of Kinesio taping and massage application to the calf muscles on ankle stability. METHODS: The study subjects were 66 healthy adults (male: 32, female: 34) who had no instability in their ankles. Subjects were randomly assigned to a Kinesio taping group or a massage group. The research tool used the Y-balance test to measure instability of the ankle. The distance between the right and left foot was measured from the center in the anterior, posterior-medial, and posterior-lateral directions. Massage was applied to the calf muscles three times over two weeks and Kinesio tape was attached to the calf muscle and tibialis anterior for 10 hours twice during the experimental period. RESULTS: The results showed that application of Kinesio taping resulted in increases in the distance between the feet increased in some directions. After the massage, the distance extended from the anterior and posterior-lateral directions was prolonged, and the ankle stability on the right and left sides was partially improved by massage application. CONCLUSION: Kinesio taping and massage applied to the calf muscles are appropriate interventions for the improvement of ankle stability. Based on the application times of massage, Kinesio taping appears to work more effectively for ankle stability.

Altered Ground Reaction Forces in Individuals with Chronic Ankle Instability Compared to Lateral Ankle Sprain Copers and Healthy Controls during Walking

  • Inje Lee;Sunghe Ha;Sae Yong Lee
    • 한국운동역학회지
    • /
    • 제33권3호
    • /
    • pp.94-100
    • /
    • 2023
  • Objective: Few studies have investigated alterations of ground reaction force (GRF) in individuals with chronic ankle instability (CAI) compared with lateral ankle sprain (LAS) copers and healthy controls during walking. This study aimed to investigate differences in GRF variables among the CAI, LAS coper, and control groups. Method: Eighteen individuals with CAI, 18 LAS copers, and 18 healthy controls were recruited for this study. All participants walked on 8-m walkway with a force plate three times. GRF data during stance phase were extracted and analyzed. The analysis of variance and ensemble curve analysis were used for statistical analyses of discrete points and time-series data respectively. Results: The CAI group showed a greater loading rate (LR) and a shorter time to impact peak force than the other groups, as well as decreased vGRF from 56% to 65% in the stance phase than the control group. No significant differences were noted in the other variables. Conclusion: Based on these findings, individuals with CAI should enhance their ability to create propulsion during the push-off phase and spend more time absorbing GRF to decrease the LR, which is considered one of risk factors for overuse injury and ankle osteoarthritis.

Mini-partial lateral corpectomy and hemilaminectomy for the treatment of heavily protruded thoracolumbar intervertebral disc in small dogs

  • Han, Hyun-Jung;Yoon, Hun-Young
    • 대한수의학회지
    • /
    • 제59권4호
    • /
    • pp.213-217
    • /
    • 2019
  • Five paraplegic dogs were diagnosed with thoracolumbar intervertebral disc disease with more than 50% compression of spinal cord. Because the lesions were determined to be disc extrusion on magnetic resonance imaging, a hemilaminectomy was initially performed, however, protruded discs were confirmed during surgery. To remove the protruded disc, modified partial lateral corpectomy (mini-PLC) was additionally performed. All dogs recovered to full ambulation within a median of 44 days without temporary deterioration or vertebral instability. Mini-PLC as described here enables successful removal of the protruded disc, while preserving vertebral stability in dogs for whom the use of hemilaminectomy is inevitable.

독립 차륜형 전동기 설계를 통한 횡 변위 제어에 관한 연구 (A Study on Lateral Displacement Control by Design of Independent-wheel Type Machine)

  • 안한웅;박현종;원준희;조수연;이형우;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.645-646
    • /
    • 2015
  • The conventional wheelsets has disadvantages of potential oscillatory instability. In the paper, a design of the permanent magnet synchronous machine of independent-wheel type for near-surface is performed. Also, the lateral displacement control algorithm is proposed. The subcale bogie can maintain the centering by this algorithm. The design of the machine is verified by BEMF. And the validity and usefulness of the lateral displacement control algorithm is verified by experimental results.

  • PDF

Investigation of the Instability of FGM box beams

  • Ziane, Noureddine;Meftah, Sid Ahmed;Ruta, Giuseppe;Tounsi, Abdelouahed;Adda Bedia, El Abbas
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.579-595
    • /
    • 2015
  • A general geometrically non-linear model for lateral-torsional buckling of thick and thin-walled FGM box beams is presented. In this model primary and secondary torsional warping and shear effects are taken into account. The coupled equilibrium equations obtained from Galerkin's method are derived and the corresponding tangent matrix is used to compute the critical moments. General expression is derived for the lateral-torsional buckling load of unshearable FGM beams. The results are validated by comparison with a 3D finite element simulation using the code ABAQUS. The influences of the geometrical characteristics and the shear effects on the buckling loads are demonstrated through several case studies.

Overturning Resistance of Plain Concrete Piers in OSPG Railroad Bridges

  • Rhee, In-Kyu;Park, Joo-Nam;Choi, Eun-Soo
    • International Journal of Railway
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2010
  • The steel plate-girder bridges with concrete gravity piers have possibilities of overturning by lateral inertial force which can be reproduced by sudden earthquake attack. This paper explores an overturning mechanism of existing concrete gravity pier onto the sandy soil in the event of lateral push-over load by in-situ experimental observation. The in-situ push-over experiment for pier with earth anchors between spread footing and rock beds exhibits a reasonable enhancement of ductility against overturning. In unanchored system, a flexural crack at cold joint of concrete pier is not developed because of the over-turning of the pier. This leads a global instability (rotation) of pier-footing system with relatively low stresses in pier itself. While a lateral load is persistently increased in anchored system, the successive flexural cracking failure at cold joint is observed even after the local shear failure of soil due to redistribution of stress equilibrium between soil and pier structure as long as a tensile action of anchor cable is active.

  • PDF

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

Impact of Chronic Lateral Ankle Instability with Lateral Collateral Ligament Injuries on Biochemical Alterations in the Cartilage of the Subtalar and Midtarsal Joints Based on MRI T2 Mapping

  • Hongyue Tao;Yiwen Hu;Rong Lu;Yuyang Zhang;Yuxue Xie;Tianwu Chen;Shuang Chen
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.384-394
    • /
    • 2021
  • Objective: To quantitatively assess biochemical alterations in the cartilage of the subtalar and midtarsal joints in chronic lateral ankle instability (CLAI) patients with isolated anterior talofibular ligament (ATFL) injuries and combined calcaneofibular ligament (CFL) injuries using MRI T2 mapping. Materials and Methods: This study was performed according to regulations of the Committee for Human Research at our institution, and written informed consent was obtained from all participants. Forty CLAI patients (26 with isolated ATFL injuries and 14 with combined ATFL and CFL injuries) and 25 healthy subjects were recruited for this study. All participants underwent MRI scans with T2 mapping. Patients were assessed with the American Orthopedic Foot and Ankle Society (AOFAS) rating system. The subtalar and midtarsal joints were segmented into 14 cartilage subregions. The T2 value of each subregion was measured from T2 mapping images. Data were analyzed with ANOVA, the Student's t test, and Pearson's correlation coefficient. Results: T2 values of most subregions of the subtalar joint and the calcaneal facet of the calcaneocuboid joint in CLAI patients with combined CFL injuries were higher than those in healthy controls (all p < 0.05). However, there were no significant differences in T2 values in subtalar and midtarsal joints between patients with isolated ATFL injuries and healthy controls (all p > 0.05). Moreover, T2 values of the medial talar subregions of the posterior subtalar joint in patients with combined CFL injuries showed negative correlations with the AOFAS scores (r = -0.687, p = 0.007; r = -0.609, p = 0.021, respectively). Conclusion: CLAI with combined CFL injuries can lead to cartilage degeneration in subtalar and calcaneocuboid joints, while an isolated ATFL injury might not have a significant impact on the cartilage in these joints.