• Title/Summary/Keyword: Lateral displacement

Search Result 1,272, Processing Time 0.022 seconds

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.

Lateral Behavior Characteristics of Short Pile in Sands by Model Tests (모형실험에 의한 사질토 지반에서 단말뚝의 수평거동 특성)

  • Kim, Jin-Bok;Park, Jong-Un;Han, Dae-Hwan;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.366-376
    • /
    • 2008
  • The model tests of short pile with very small pile length/diameter(L/D) were performed in this paper. Varying the pile diameter, length, and the lateral loading point, the lateral resistance and behavior of very short pile were studied in this model tests. The experimental and analytical results are as follows. The lateral ultimate resistance of short pile in sands was the maximum at the point of h/L=0.75, regardless of pile length/diameter(L/D). As the pile diameter is larger, the lateral ultimate resistance of pile with L/D=1 decreases a little and the lateral resistance increases according to the ratio of pile length/diameter. As the lateral loads are acting on the pile, the displacement of pile head is maximum at the pile top of h/L=0, but minimum at the middle point of the pile. And if the loading point is under the middle of pile, the displacement of pile head occurs oposite in the loading direction, but its magnitude is very small.

  • PDF

Estimation of Settlement Caused by Lateral Displacement by Means of the Differences of Settlements from Consolidation Theory and Field Measurement (압밀이론에 의한 침하량과 현장계측 침하량의 차에 의한 측방유동 침하량 산정)

  • Kang, Min-Soo;Jeon, Sang-Ok;Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.59-68
    • /
    • 2009
  • In this study, it was developed that the software could be used to estimate consolidation settlement by curve fitting method according to Terzaghi's consolidation theory on the condition of gradual incremental loading, and the method of estimating settlement caused by lateral displacement was suggested, in which the settlement was calculated from the difference between the settlement calculated with the developed software using the early part of measured data and the settlement measured for the short duration from the beginning of embankment in the field. The verification of the suggested method of estimating settlement caused by lateral displacement showed good results.

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.

Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving

  • Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Cho, Yonho;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1042-1048
    • /
    • 2016
  • This paper presents a lateral displacement restoring force control for the independently rotating wheelsets (IRWs) of shallow-depth subway systems. In the case of the near surface transit, which has recently been introduced, sharp curved driving performance is required for the city center service. It is possible to decrease the curve radius and to improve the performance of the straight running with the individual torque control. Therefore, the individual torque control performance of the motor is the most important point of the near surface transit. This paper deals with a lateral displacement restoring force control for sharp curved driving. The validity and usefulness of the proposed control algorithm is verified by experimental results using a small-scale bogie system.

Behavior of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반 호안의 측방유동에 따른 안벽 말뚝의 거동)

  • Shin, Eunchul;Park, Jeongjun;Ryu, Ingi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Recently, the lateral displacement of the passive piles which are installed under the revetment on the soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of ground when the revetment loading exceeds a certain limit. The lateral displacement of ground causes an excessive deformation of underground structure itself and develops lateral earth pressure against the pile foundation. The subject of study is to investigate the lateral displacement of pile foundation during the construction of container terminal at the ${\bigcirc}{\bigcirc}{\bigcirc}{\bigcirc}$ port in Incheon. The displacement of pile and the vertical settlement were measured in the field and finite element method(FEM) analysis for each construction sequence was performed using AFFIMEX(Ver 3.4). From the comparison of the results from field measurement and the finite element analysis, the settlement of the reventment has already occurred at the time of field measurements. Since then, the noticeable lateral displacement of piles and settlement were occurred during the filling of dredged soil inside the revetment dredging and reclaiming work. After completing filling, the lateral displacement and field settlement were reduced remarkably. Generally, the results from the finite element analysis show larger than those from the measurement.

  • PDF

Effects of Head Posture on the Rotational Torque Movement of Mandible in Patients with Temporomandibular Disorders (두경부 위치에 따른 측두하악장애환자의 하악 torque 회전운동 분석)

  • Park, Hye-Sook;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.2
    • /
    • pp.173-189
    • /
    • 2000
  • The purpose of this study was to evaluate the effect of specific head positions on the mandibular rotational torque movements in maximum mouth opening, protrusion and lateral excursion. Thirty dental students without any sign or symptom of temporomandibular disorders(TMDs) were included as a control group and 90 patients with TMDs were selected and examined by routine diagnostic procedure for TMDs including radiographs and were classified into 3 subgroups : disc displacement with reduction, disc displacement without reduction, and degenerative joint disease. Mandibular rotational torque movements were observed in four head postures: upright head posture(NHP), upward head posture(UHP), downward head posture(DHP), and forward head posture(FHP). For UHP, the head was inclined 30 degrees upward: for DHP, the head was inclined 30 degrees downward: for FHP, the head was positioned 4cm forward. These positions were adjusted with the use of cervical range-of-motion instrumentation(CROM, Performance Attainment Inc., St. Paul, U.S.A.). Mandibular rotational torque movements were monitored with the Rotate program of BioPAK system (Bioresearch Inc., WI, U.S.A.). The rotational torque movements in frontal and horizontal plane during mandibular border movement were recorded with two parameters: frontal rotational torque angle and horizontal rotational torque angle. The data obtained was analyzed by the SAS/Stat program. The obtained results were as follows : 1. The control group showed significantly larger mandibular rotational angles in UHP than those in DHP and FHP during maximum mouth opening in both frontal and horizontal planes. Disc displacement with reduction group showed significantly larger mandibular rotational angles in DHP and FHP than those in NHP during lateral excursion to the affected and non-affected sides in both frontal and horizontal planes(p<0.05). 2. Disc displacement without reduction group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening as well as lateral excursion to the affected and non-affected sides in both frontal and horizontal planes. Degenerative joint disease group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening, protrusion and lateral excursion in both frontal and horizontal planes(p<0.05). 3. In NHP, mandibular rotational angle of the control group was significantly larger than that of any other patient subgroups. Mandibular rotational angle of disc displacement with reduction group was significantly larger than that of disc displacement without reduction group during maximum mouth opening in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group or degenerative joint disease group during maximum mouth opening in the horizontal plane(p<0.05). 4. In NHP, mandibular rotational angles of disc displacement without reduction group were significantly larger than those of the control group or disc displacement with reduction group during lateral excursion to the affected side in both frontal and horizontal planes. Mandibular rotational angle of disc displacement without reduction group was significantly smaller than that of the control group during lateral excursion to the non-affected side in frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group during lateral excursion to the non-affected side in the horizontal plane(p<0.05). 5. In NHP, mandibular rotational angle of the control group was significantly smaller than that of disc displacement with reduction group or disc displacement without reduction group during protrusion in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of the disc displacement with reduction group or degenerative joint disease group during protrusion in the horizontal plane. Mandibular rotational angle of the control group was significantly smaller than that of disc displacement without reduction group or degenerative joint disease group during protrusion in the horizontal plane(p<0.05). 6. In NHP, disc displacement without reduction group and degenerative joint disease group showed significantly larger mandibular rotational angles during lateral excursion to the affected side than during lateral excursion to the non-affected side in both frontal and horizontal planes(p<0.05). The findings indicate that changes in head posture can influence mandibular rotational torque movements. The more advanced state is a progressive stage of TMDs, the more influenced by FHP are mandibular rotational torque movements of the patients with TMDs.

  • PDF

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.