• 제목/요약/키워드: Lateral displacement

검색결과 1,283건 처리시간 0.023초

지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석 (The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition)

  • 송수민;박종전;정상섬
    • 한국지반공학회논문집
    • /
    • 제38권1호
    • /
    • pp.17-33
    • /
    • 2022
  • 본 연구는 지하수 유무에 따른 지진시 풍화지반에 근입된 단말뚝의 동적 거동을 분석하기 위해 수치해석을 수행하였다. 3차원 유한차분해석 프로그램을 사용하여 지하수 및 지반 조건에 따라 동적 수치해석을 수행하였으며, 풍화지반의 물성은 현장에서 채취한 흙의 물성시험을 통해 해석에 적용하였다. 건조한 지반 및 포화된 지반은 Mohr-Coulomb, Finn model을 각각 적용하여 모델링하였고, 각각의 모델링은 원심모형실험 결과와 검증을 수행하였다. 해석결과, 전반적으로 지하수위가 존재하는 경우가 건조한 경우보다 더 큰 말뚝의 수평변형을 나타냈으며, 깊은 심도에서부터 그 차이가 크게 발생하는 것으로 확인되었다. 이는 포화지반에 지진이 발생하게 되면 과잉간극수압의 발생으로 인해 지반 구속압이 감소하게 되는 현상에 지배되는 것으로 확인되었다. 또한, 지반에 근입된 말뚝의 영향으로 인근 지반에서의 전단변형률이 작게 발생하고, 과잉간극수압은 말뚝과 멀리 떨어진 지반에 비해 작게 증가하는 경향을 보였다.

3D printing of multiple container models and their trajectory tests in calm water

  • Li, Yi;Yu, Hanqi;Smith, Damon;Khonsari, M.M.;Thiel, Ryan;Morrissey, George;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.225-245
    • /
    • 2022
  • More and more shipping containers are falling into the sea due to bad weather. Containers lost at sea negatively affect the shipping line, the trader and the consumer, and the environment. The question of locating and recovering dropped containers is a challenging engineering problem. Model-testing of small-scaled container models is proposed as an efficient way to investigate their falling trajectories to salvage them. In this study, we first build a standard 20-ft container model in SOLIDWORKS. Then, a three-dimensional (3D) geometric model in the STL (Standard Tessellation Language) format is exported to a Stratasys F170 Fused Deposition Modeling (FDM) printer. In total, six models were made of acrylonitrile styrene acrylate (ASA) and printed for the purpose of testing. They represent three different loading conditions with different densities and center of gravity (COG). Two samples for each condition were tested. The physical models were dropped into the towing tank of University of New Orleans (UNO). From the experimental tests, it is found that the impact of the initial position after sinking can cause a certain initial rolling velocity, which may have a great impact on the lateral displacement, and subsequently affect the final landing position. This series of model tests not only provide experimental data for the study of the trajectory of box-shape objects but also provide a valuable reference for maritime salvage operations and for the pipeline layout design.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

선생 유치의 외상 후 발생한 만곡된 하악 영구 중절치의 자발적 맹출 : 증례보고 (Spontaneous Eruption of a Dilacerated Mandibular Central Incisor after Trauma of a Primary Tooth : Two Case Reports)

  • 장은영;이제식;남순현;김현정
    • 대한소아치과학회지
    • /
    • 제48권1호
    • /
    • pp.115-121
    • /
    • 2021
  • 치아 만곡은 치아의 치관부 혹은 치근부에서 발생한 장축의 갑작스러운 굽힘을 의미한다. 이는 주로 선행 유치에 대한 기계적 외상이 원인이 되어 발생한다. 만곡된 치아는 종종 맹출 장애를 동반한다. 치아 만곡은 하악에서 드물게 발생하지만, 함입과 같은 심한 외상성 손상 이후에 충분히 발생할 수 있다. 본 증례는 두 명의 환아에서 확인된 선행 유치의 함입성 외상 이후 발생한 하악 영구 중절치에서의 만곡에 대한 증례를 보고하고 있으며, 두 증례 모두에서 만곡 치아의 자발적 맹출이 관찰되었다. 첫 번째 증례는 치관과 치근의 경계부 주위에서 측방치근만곡을 보였으며, 두 번째 증례는 치관만곡을 보였다. 본 증례를 통해서 유치의 외상 이후 하악 영구 중절치에서 치관부 만곡 혹은 치관과 치근 경계부에서의 측방만곡이 관찰된다면, 만곡치아의 자발적 맹출을 기대해 볼 수 있음을 확인할 수 있었다.

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

폐콘크리트를 이용한 지오백 옹벽의 거동특성 평가 (Behaviour of Geobag Well System Using Recycled Waste Concrete)

  • 김진만;이대영;주태성;이준근;백영식;한상현
    • 한국지반공학회논문집
    • /
    • 제22권5호
    • /
    • pp.39-45
    • /
    • 2006
  • 본 연구에서는 폐콘크리트를 이용한 지오백 옹벽의 거동특성 평가를 위해 대형 압축강도시험과 현장계측을 수행하였다. 연구의 주요내용으로는 폐콘크리트 지오백의 강도, 횡방향 토압, 뒷채움재의 변형특성, 벽체의 수평변위 거동 평가 등이다. 연구결과를 통해 폐콘크리트를 이용한 지오백 옹벽의 변형이 보강토 옹벽의 허용변형 이내의 안정적인 거동을 보이는 것을 알 수 있다. 또한 폐콘크리트 이용 지오백 옹벽은 재활용 순환골재 사용에 따른 경제성 및 조립시공에 따른 시공성 향상 등의 효과가 있을 것으로 판단되었다.

Differences in dentoskeletal and soft tissue changes due to rapid maxillary expansion using a tooth-borne expander between adolescents and adults: A retrospective observational study

  • An, Jung-Sub;Seo, Bo-Yeon;Ahn, Sug-Joon
    • 대한치과교정학회지
    • /
    • 제52권2호
    • /
    • pp.131-141
    • /
    • 2022
  • Objective: The purpose of this study was to compare the differences in dentoskeletal and soft tissue changes following conventional tooth-borne rapid maxillary expansion (RME) between adolescents and adults. Methods: Dentoskeletal and soft tissue variables of 17 adolescents and 17 adults were analyzed on posteroanterior and lateral cephalograms and frontal photographs at pretreatment (T1) and after conventional RME using tooth-borne expanders (T2). Changes in variables within each group between T1 and T2 were analyzed using Wilcoxon signed-rank test. Mann-Whitney U test was used to determine the differences in the pretreatment age, expansion and post-expansion durations, and dentoskeletal and soft tissue changes after RME between the groups. Spearman's correlation between pretreatment age and transverse dentoskeletal changes in the adolescent group was calculated. Results: Despite similar amounts of expansion at the crown level in both groups, the adult group underwent less skeletal expansion with less intermolar root expansion after RME than the adolescent group. The skeletal vertical dimension increased significantly in both groups without significant intergroup difference. The anteroposterior position of the maxilla was maintained in both groups, while a greater backward displacement of the mandible was evident in the adult group than that in the adolescent group after RME. The soft tissue alar width increased in both groups without a significant intergroup difference. In the adolescent group, pretreatment age was not significantly correlated with transverse dentoskeletal changes. Conclusions: Conventional RME may induce similar soft tissue changes but different dentoskeletal changes between adolescents and adults.

단순 트러스 모델에 의한 철근콘크리트 교량 바닥판의 펀칭전단강도 (Punching Shear Strength of RC Slabs by Simple Truss Model)

  • 이용우;황훈희
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.187-196
    • /
    • 2008
  • 이 연구에서는 단순 트러스 모델을 이용한 철근콘크리트 바닥판의 펀칭전단강도 평가방안을 제안하였다. 철근콘크리트 바닥판의 펀칭전단 해석의 본질적인 어려움을 극복하기 위해 집중하중이 작용하는 바닥판을 펀칭전단 파괴 형태에 기초하여 펀칭콘과 나머지 부분의 소구조체로 구분하였다. 펀칭콘의 강도는 이상화한 트러스의 경사압축부재의 강성도로써 유도되었다. 수평변위를 제어하고 있는 롤러지점의 수평방향 스프링 부재의 강성도는 펀칭콘 내에 포함된 철근에 의하여 결정되었다. 3차원 구조물의 2차원화에 따른 오차와 해석과정에 포함되지 않은 나머지 소구조체의 강성도 등에 기인하는 불확실성들을 포함하기 위하여 경사압축재의 초기각은 실험결과들에 대해 주인장 철근비를 변수로 수행된 회귀분석을 통하여 구하였다. 단순 트러스 모델로부터 구한 펀칭전단강도는 실험결과와의 비교에서 신뢰성이 높은 것으로 나타났다. 단순 트러스 모델의 스냅스로우(snap-through)좌굴해석으로부터 구한 펀칭전단강도는 철근콘크리트 바닥판의 펀칭전단강도의 검토에 유용하게 사용될 수 있을 것이다.

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.