• Title/Summary/Keyword: Lateral collision

Search Result 70, Processing Time 0.026 seconds

Path Planning for Autonomous Navigation of a Driverless Ground Vehicle Based on Waypoints (무인운전차량의 자율주행을 위한 경로점 기반 경로계획)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.211-217
    • /
    • 2014
  • This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.

Gate Pier damage assessment by vessel collision (선박충돌에 따른 콘크리트 배수갑문 교각 구조해석)

  • Kim, Kwan-Ho;Cho, Jae-Yong;Cho, Young-Kweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.165-166
    • /
    • 2010
  • Collision scenario was 12 cases considering gate location, water level and lateral location of collision etc. And then, analysis result of trunnion by collision loads (reservoir side gate). Compressive fracture may not occur because the maximum compressive stress of concrete is below the allowable compressive strength. but, it is possible to appear some local crack because the maximum tensile stress exceed the tensile strength.

  • PDF

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

The Study on Lateral Motion of Crane Driving Mechanism (크레인 구동부의 Lateral Motion에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.703-707
    • /
    • 2000
  • This paper studied on the lateral motion of the gantry crane which is used for the automated container terminal. Though several problems are occurred in driving of gantry crane, they are solved by the motion by the operator. But, if the gantry crane is unmanned, it is automatically controlled without any human operation. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to these problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane are derived. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and the yaw angle. The simulation result of the driving mechanism using the Runge-Kutta method is presented in this paper.

  • PDF

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.

Ship Collision Risk Analysis of Bridge Piers (선박충돌로 인한 교각의 위험도 분석)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 2005
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions.

Design of Guidance Law for Docking of Unmanned Surface Vehicle (무인선의 도킹을 위한 유도법칙 설계)

  • Woo, Joohyun;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.208-213
    • /
    • 2016
  • This paper proposes a potential field-based guidance law for docking a USV (unmanned surface vehicle). In most cases, a USV without side thrusters is an under-actuated system. Thus, there are undockable regions near docking stations where a USV cannot dock to a docking station without causing a collision or backward motion. This paper suggest a guidance law that prevents a USV from enter such a region by decreasing the lateral error to the docking station at the initial stage of the docking process. A Monte-carlo simulation was performed to validate the performance of the proposed method. The proposed method was compared to conventional guidance laws such as pure pursuit guidance and pure/lead pursuit guidance. As a result, the collision angle and lateral distance error of proposed method tended to have lower values compared to conventional methods.

Strategies of Collision Avoidance with Moving and Stationary Human Obstacles during Walking (보행 시 인간 장애물의 동적·정적 상태에 따른 충돌회피전략)

  • Lee, Yeon-Jong;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Objective: The aim of this study was to investigate the strategies for avoiding moving and stationary walker using body segments during walking. Method: Ten healthy young adults (10 males, age: $24.40{\pm}0.49yrs$, height: $175.80{\pm}5.22cm$, body mass: $70.30{\pm}5.22kg$) participated in this study. Each participant was asked to perform a task to avoid collisions with another walker who was moving or stationary during walking on the 10 m walkway. Both walkers were performed at natural self-selected walking speed. Results: Medio-lateral avoidance displacement of the trunk and the pelvis were significantly increased when avoiding a stationary walker (p<.05). There were no significant differences in medio-lateral center of mass trajectory. Rotation angle of trunk, pelvis and foot on the vertical axis were significantly increased when avoiding a stationary walker (p<.05). Conclusion: Based on our results, when another walker moves continuously, the walker recognizes another walker as the object of social interaction and performs the avoidance strategies while expecting the cooperative distance. On the other hand, when another walker is stopped, it is determined that the walker has an obligation to avoid, and the walker performs a relatively safer avoidance strategy.

The Risk Analysis and Stability Estimation of Ship Collision Protection of Myodo-Gangyang Suspension Bridge (묘도-광양간 현수교의 선박충돌 방지공의 위험도 분석 및 안정성 평가)

  • Chang, Yong-Chai;Park, Ki-Chul;Kim, Kyung-Taek
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. In this paper, the method of risk analysis and non-linear numerical analysis are conducted to consider the ship collision effects. The results of risk analysis, the annual frequency of collapse is more than the acceptable frequency 0.0001. Therefore, as a ship collision protection, island protection with concrete block quay wall is planned. The ship collision force on the pylon is less than the lateral capacity of pylon from the nonlinear numerical analysis.

  • PDF

Study on the Prediction of Lateral and Yawing Behaviors of a Leading Vehicle in a Train Collision (철도차량 충돌 시 선두차량의 횡 및 요잉 거동 예측 연구)

  • Kim, Jun Woo;Jeong, Eui Cheol;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this study, we derived theoretical equations for the zigzag movement of a leading vehicle, which is the most frequent behavior in train accidents, by using a simplified spring-mass model for the rolling stock. In order to solve the equations of motion, we applied the Runge-Kutta method, which is the typical numerical analysis method used for differential equations. Furthermore, the lateral displacement of the wheel-set at the wheel-rail interface was estimated using kinetic energy. In order to verify the derived equations, we compared the theoretical and simulated results under various collision conditions. The maximum relative deviations of the lateral displacements were 0.8 [%] ~ 4.7 [%] in light collisions and 0.6 [%] ~ 5.1 [%] under derailment conditions. When an accident is simulated, these theoretical equations can be used to predict the overall behavior and obtain the offset of the body-to-body link as the initial perturbation.