• Title/Summary/Keyword: Lateral Resolution

Search Result 167, Processing Time 0.026 seconds

A Recursive Restoration Scheme of B-Scan Ultrasonographic Images in Noisy Case (잡음을 고려한 회귀방법에 의한 초음파 진단기의 화상개선)

  • Kim, Sun-I.;Min, Byoung-G.;Ko, Myoung-S.
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.35-42
    • /
    • 1982
  • The objective of this phantom study is to develop a digital method for improving the lateral resolution of B-scan ultrasonographic images irs medical application of ultrasound. By utilizing a discrete state-space modeling approach and Kalman-Buch method for analysis of the transducer's beam profile and the measurement and sampling noise, a stable recursive restoration of the object image was obtained for improved lateral resolution. The point spread function (PSF) was measured for the reflective signals after scanning the small pins located along the depth of interest. One major advantage of the present recursive scheme over the transform method is in its applicability for the space-variant imaging, such as in the case of the rotational movement of transducer.

  • PDF

Resonution Enhancement of Ultrasonic B-Scan Images by Deconvolution (횡축 디콘벌루션에 의한 초음파 B 스캔 연상의 해상력 향상)

  • Jeong, Joon-Young;Chin, Young-Min;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.445-449
    • /
    • 1988
  • Digital processing of measured data offers a powerful means to improve the resolution and quality of ultrasonic imaging. The present research demonstrates that filtering typical B-scan images using Wiener filter enhances lateral resolutions by more than 50 percent. The filter is operated using the measured signal amplitude across the transmitter beam and the beam with. It is optimized for low noise and high resolution By an empirical approach. This bethod for lateral filtering produces a very useful result for the line images with high interference by neighboring lines.

  • PDF

An Improved Second-odrer Sampling Method for Digital Beam Forming in Ultrasound Imaging Systems (초음파 영상 시스템에서 디지탈 Beam Forming을 위한 개선된 2차 샘플링 방법)

  • 조완희;안영복
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.110-119
    • /
    • 1995
  • The lateral resolution in an ultrasound imaging system is one of the most important factors for quality of the image and is determined by the beam focusing. For the better lateral resolution SDF(Sampled Delay Focusing) capable of digital focusing was proposed. The second-order sampling, one of band-width sampling methods, is suggested as being the best suitable for SDF because it allows total digital processing and is simple and economical. By proving that it introduces too much error, this article shows the second-order sampling is not appropriate for sampling of the wide-band signal generally used in ultrasound imaging systems. Also, this article suggests new sampling methods that maintain the advantages and reduce the unavoidable errors of the second-order sampling method. From computer simulation it is expected that the proposed methods reduce the errors of the second-order sampling method and can be used in real applications.

  • PDF

Ultrasound Imaging Based On Simultaneous Multiple Transmit Focusing Using Orthogonal Modified Golay Code (직교하는 변형된 골레이(Golay) 코드를 이용한 동시 다중 집속 기반의 초음파 영상 기법)

  • Kim, B.H.;Jeong, Y.K.;Song, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.187-190
    • /
    • 2001
  • A new ultrasound imaging technique based on simultaneous multiple transmit focusing using orthogonal modified Golay codes is presented. modified Golay codes are used to increase signal-to-noise-ratio(SNR) and maximize the transmit power efficiency(TPE). Conventional Golay codes consist of a pair of complementary codes with same length and can be compressed into a delta-like signal due to their complementary property. In the present work, two modified Golay codes focused at different depths are transmitted at the same time, which are mutually orthogonal. On receive, these orthogonal modified Golay codes are separately compressed into two short pulses and individually focused. These two focused beam are combined to form a frame of image with improved lateral resolution. Computer simulations are performed to verity the proposed method improves the lateral resolution of image compared with the conventional echo system.

  • PDF

A New Synthetic Aperture Technique Using Linear Wave Fronts (선형 파면을 이용한 새로운 합성구경 기법)

  • 장진호;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.321-330
    • /
    • 2001
  • In this paper, we propose a new synthetic aperture focusing scheme for improving the lateral resolution which is one of the most important factors determining the quality of ultrasound imaging. The proposed scheme enables full round-trip dynamic focusing with approximately limited property. This properties are obtained through transmitting plane waves of which the traveling angle varies with the receive subaperture position, as opposed to stepping the spherical wave source across an array in other synthetic aperture focusing schemes, and employing dynamic focusing in receive. In this paper, the properties of the proposed scheme is analyzed in which a hypothetical infinite line source is used to transmit the plane waves and verified through computer simulation results. Also, we show that the proposed scheme is realizable with an array transducer with a finite aperture size. In summary, it is shown through comparison between the field contours of the proposed scheme and the conventional scheme that the proposed scheme can improve greatly the lateral resolution of ultrasound imaging.

  • PDF

A Study on the Dynamic Analysis on the Cross Directional Register in Roll-to-roll e-Printing Systems (롤투롤 인쇄전자에서의 횡방향 레지스터 동적 특성 모델링)

  • Kang, Hyun-Kyoo;Ahn, Jin-Hyun;Lee, Chang-Woo;Shin, Kee-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2010
  • For the adaption of roll-to-roll printing method to the printed electronics, it is mandatory to increase the resolution of register errors. Therefore it is desired to derive the mathematical modeling of register error or to develop controller design. The cross direction register error was derived considering both lateral motion of moving web and transverse position of printing roll. The mathematical modeling was validated and the relationship between the lateral motion and register error was analyzed by numerical simulations in various operating conditions using multi-layer direct gravure printing machine. The results could be used for a design of the CD register in the multi-layer printing and the lateral motion caused by translation.

New Diagnostic Tool for Far Lateral Lumbar Disc Herniation : The Clinical Usefulness of 3-Tesla Magnetic Resonance Myelography Comparing with the Discography CT

  • Kim, Duk-Gyu;Eun, Jong-Pil;Park, Jung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.2
    • /
    • pp.103-106
    • /
    • 2012
  • Objective : To prospectively assess the diagnostic and clinical value of a new technique (3-tesla magnetic resonance myelography, 3T MRM) as compared to computed tomographic discography (disco-CT) in patients with far lateral disc herniation. Methods : We evaluated 3T MRM and disco-CT of 25 patients, whom we suspected of suffering from far lateral disc herniation. Using an assessment scale, 4 observers examined independently both 3T MRM and disco-CT images. We analyzed observer agreement and the accentuation of each image. Results : We found complete matching, and observer agreement, between high resolution images of 3T MRM and disco-CT for diagnosing far lateral disc herniation. Conclusion : We think noninvasive 3T MRM is an appropriate diagnostic tool for far lateral disc herniation as compared to disco-CT.

Current Trends for Treating Lateral Epicondylitis

  • Kim, Gyeong Min;Yoo, Seung Jin;Choi, Sungwook;Park, Yong-Geun
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.4
    • /
    • pp.227-234
    • /
    • 2019
  • Lateral epicondylitis, also known as 'tennis elbow', is a degenerative rather than inflammatory tendinopathy, causing chronic recalcitrant pain in elbow joints. Although most patients with lateral epicondylitis resolve spontaneously or with standard conservative management, few refractory lateral epicondylitis are candidates for alternative non-operative and operative modalities. Other than standard conservative treatments including rest, analgesics, non-steroidal anti-inflammatory medications, orthosis and physical therapies, nonoperative treatments encompass interventional therapies include different types of injections, such as corticosteroid, lidocaine, autologous blood, platelet-rich plasma, and botulinum toxin, which are available for both short-term and long-term outcomes in pain resolution and functional improvement. In addition, newly emerging biologic enhancement products such as bone marrow aspirate concentrate and autologous tenocyte injectates are also under clinical use and investigations. Despite all non-operative therapeutic trials, persistent debilitating pain in patients with lateral epicondylitis for more than 6 months are candidates for surgical treatment, which include open, percutaneous, and arthroscopic approaches. This review addresses the current updates on emerging non-operative injection therapies as well as arthroscopic intervention in lateral epicondylitis.

Scanning Nonlinear Dielectric Microscopy : Overview -A High Resolution Tool for Observing Ferroelectric Domains and Nano-domain Engineering-

  • Cho, Yasuo
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1047-1057
    • /
    • 2003
  • A sub-nanometer resolution Scanning Nonlinear Dielectric Microscope (SNDM) was developed for observing ferroelectric polarization. We also demonstrate that the resolution of SNDM is higher than that of a conventional piezo-response imaging. Secondly, we report new SNDM technique detecting higher nonlinear dielectric constants $\varepsilon$$\_$3333/ and $\varepsilon$$\_$33333/. Higher order nonlinear dielectric imaging provides higher lateral and depth resolution. Finally, the formation of artificial small inverted domain is reported to demonstrate that SNDM system is very useful as a nano-domain engineering tool. The nano-size domain dots were successfully formed in LiTaO$_3$ single crystal. This means that we can obtain a very high density ferroelectric data storage with the density above 1T-bits/inch$^2$.