• Title/Summary/Keyword: Lateral Damper

Search Result 99, Processing Time 0.022 seconds

Performance Evaluation of Response Reduction of Outrigger Damper System Subjected to Wind Loads (풍하중에 대한 아웃리거 댐퍼시스템의 응답 제어 성능 평가)

  • Kim, Su-Jin;Kim, Min-Ju;Kim, Jun-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.35-42
    • /
    • 2018
  • The outrigger damper system is a structural system with excellent lateral resistance when a wind load occurs. However, research on outrigger dampers is still in its infancy. In this study, dynamic response control performance of damper is analyzed according to change of stiffness value and damping value of damper. To do this, a real-scale 3D model of 50 stories has been developed and the artificial wind load has been entered for dynamic analysis. Generally, the larger the damping value, the smaller the stiffness value is, the more effective it is to reduce the maximum displacement and acceleration response. However, the larger the attenuation value as the cost of construction increases, it is necessary to select appropriate stiffness and damping value when applying an outrigger damper.

Method of Lateral Vibration Control of Korean High-Speed Railway 350x (한국형고속열차 횡방향 진동제어)

  • Kim, Sang-Soo;Kim, Young-Kuk;Park, Chan-Kyoung;Kim, Jong-Sun;Kim, Ki-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.974-978
    • /
    • 2006
  • To improve the riding comfort and to increase the speed of high-speed railway, it needs active suspension system for railway more and more. In Korea, Korean Train Express (KTX) was opened to commercial traffic 2years ago. Korea High-speed Railway (HSR 350x) is being developed and succeeded 350km/h test run. With the increase of the speed, the vibration control of the high-speed railway becomes important to meet high ride quality. In this paper, we suggest the install of lateral damper to HSR 350x. The result shows better ride quality.

  • PDF

Capacity Development of Existing Frame by Aramid Sheet and Energy Dissipation Device (아라미드 시트와 에너지 소산 장치에 의한 기존 골조의 능력 향상)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.112-119
    • /
    • 2015
  • In this paper, the strengthening method was proposed for improving the seismic performance of the vulnerable structural frames. To improve the brittle characteristics of columns, aramid fiber sheet was used for the lateral confinement of columns. And to introduce the energy dissipation capacity, a steel damper with S-shaped struts was installed. By making the unreinforced and reinforced specimens with full size specimens were evaluated for lateral load resistance capacity. It was confirmed the strengthening effects by the evaluation of failure shape, strength, stiffness degradation, and energy dissipation capacity. Also from the FE analysis using ABAQUS, the hysteretic behavior of the specimens were predicted and evaluated.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

Capacity and Placement of MR Damper for Vibration Control of MDOF System (다자유도 시스템의 진동제어를 위한 MR감소기 용량 및 위치 선정)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, peliminary design procedure of magnetorheological (MR) dampers is developed for controlling the building response induced by seismic excitation. Hysteretic biviscous model which is simple and can describe the hysteretic characteristics of MR damper is used for parametric studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force. A method is proposed for the optimal placement and number of MR dampers, and its effectiveness is verified by comparing it with the simplified search algorithm. Numerical results indicate that the capacity, number and the placement can be reasonably determined using the proposed design procedure.

  • PDF

Comparison of Motion Control Capacity of Viscous and Viscoelastic Dampers for Lateral Loads (횡하중에 대한 점성 및 점탄성감쇠기의 진동제어성능의 비교)

  • Kim, Jin-Koo;Kim, Yu-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • In this study a structure with viscoelastic and viscous dampers with identical damping coefficient subjected to stationary seismic and wind load were analyzed in time and frequency-domain to compare motion control capability of viscous and viscoelastic dampers. The dampers were placed based on story drift and acceleration obtained from RMS responses. According to the analysis results, the motion control capability of viscous dampers turned out to be superior to that of the viscoelastic dampers for the case of seismic load. On the contrary, in case of wind load, the viscoelastic dampers were more effective in the mitigation of dynamic responses. However, it was also found that the differences were in a narrow margin.

  • PDF

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.