• Title/Summary/Keyword: Latent heat of vaporization

Search Result 35, Processing Time 0.024 seconds

Prediction of Diesel Fuel Spray Characteristics in Compression Ignition Engine Cylinder by Intake Humidification (흡기 가습에 의한 압축 착화엔진 실린더 내 디젤 연료 분무 특성 예측)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The objective of this study is to predict numerically the effect of intake humidification on the injected diesel fuel spray characteristics in a compression ignition engine. In this work, Wave model and Ducowicz model were applied as the break-up model and evaporation model, respectively. The amount of water vapor for the humidification was changed from 0% to 30% of injected fuel mass. The number of applied meshes was generated from 49,000 to 110,000. At the same time, the results of this work were compared in terms of spray tip penetration, SMD and equivalence ratio distributions. It was found that the cylinder temperature and cylinder pressure were decreased with increasing water vapor mass by vaporization latent heat and specific heat, however, the difference was very small. So, the spray tip penetration was not different by water vapor mass. Also, higher equivalence ratio distributions were observed with increasing water vapor mass by the improvement of fuel atomization.

Pool Boiling Enhancement of R-123 Using Perforated Plates (다공판을 사용한 R-123 풀비등 열전달 촉진)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.275-281
    • /
    • 2016
  • In this study, we investigate the pool boiling enhancement caused by perforated plates on top of a smooth surface. We conduct tests using R-123 at atmospheric pressure. It was shown that perforated plates significantly enhanced the pool boiling of the smooth surface. The reason may be attributed to the increased bubble contact area between the plates. The results showed that the enhancement ratio was dependent on the heat flux. At high heat flux, the enhancement ratio increased as the porosity increased. However, at low heat flux, the enhancement ratio decreased as the porosity increased. For the present investigation, the optimum configuration had a pore diameter of 2.0 mm, pore pitch of $2.5mm{\times}5.0mm$ or $5.0mm{\times}5.0mm$, and a gap width of 0.5 mm, which yielded heat-transfer coefficients that are close to those of GEWA-T. The optimum porosity for R-123 was significantly larger than that of water or ethanol. The reason for this may be the large liquid-to-vapor density ratio along with the small latent heat of vaporization of R-123. The perforated plates yielded smaller boiling hysteresis compared with that of the smooth surface.

Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine (디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

NEUTRON-INDUCED CAVITATION TENSION METASTABLE PRESSURE THRESHOLDS OF LIQUID MIXTURES

  • Xu, Y.;Webster, J.A.;Lapinskas, J.;Taleyarkhan, R.P.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.979-988
    • /
    • 2009
  • Tensioned metastable fluids provide a powerful means for low-cost, efficient detection of a wide range of nuclear particles with spectroscopic capabilities. Past work in this field has relied on one-component liquids. Pure liquids may provide very good detection capability in some aspects, such as low thresholds or large radiation interaction cross sections, but it is rare to find a liquid that is a perfect candidate on both counts. It was hypothesized that liquid mixtures could offer optimal benefits and present more options for advancement. However, not much is known about radiation-induced thermal-hydraulics involving destabilization of mixtures of tensioned metastable fluids. This paper presents results of experiments that assess key thermophysical properties of liquid mixtures governing fast neutron radiation-induced cavitation in liquid mixtures. Experiments were conducted by placing liquid mixtures of various proportions in tension metastable states using Purdue's centrifugally-tensioned metastable fluid detector (CTMFD) apparatus. Liquids chosen for this study covered a good representation of both thermal and fast neutron interaction cross sections, a range of cavitation onset thresholds and a range of thermophysical properties. Experiments were devised to measure the effective liquid mixture viscosity and surface tension. Neutron-induced tension metastability thresholds were found to vary non-linearly with mixture concentration; these thresholds varied linearly with surface tension and inversely with mixture vapor pressure (on a semi-log scale), and no visible trend with mixture viscosity nor with latent heat of vaporization.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Experimental Study on Reducing Effect for Surface Temperature of Recycled Synthetic-Resin Permeable Block (재생 합성수지 투수블록의 표면온도 저감효과에 관한 실험적 연구)

  • Lee, Chul-Hee;Lee, Arum;Shin, Eun-Chul;Ryu, Byung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2019
  • The field measurement and laboratory experiment were conducted to investigate the effect of reducing the surface temperature of the functional aspect of the heat island phenomenon of the permeable block which is made the recycled synthetic resin rather than the existing concrete permeable block. Field measurement was taken for 3 days in consideration of dry condition and wet condition and laboratory experiment was divided into dry condition, rainfall simulating condition, and wetting condition. The variations of temperature and the evaporation rate of water moisture content after experiment were confirmed. As a result of field measurement, it is confirmed that the surface temperature decreases due to the difference in albedo of the pore block surface rather than the cooling effect due to the latent heat of vaporization. The evaporation of moisture in a dry state where drought persisted or a certain level of moisture was not maintained in the surface layer. As a result of laboratory experiment, resin permeable block gives higher surface temperature when it is dry condition than concrete permeable block, but the evaporation of water in the pore is kept constant by capillary force in rainfall simulation condition, and higher temperature reduction rate. As a result of measuring the evaporation rate after laboratory experiment, it is confirmed that the effect of reducing temperature is increased as the evaporation rate of water is higher. Based on these results, correlation formula for evaporation rate and temperature reduction rate is derived.

Low Temperature Drying Simulation of Rough Rice (벼의 저온건조 시뮬레이션)

  • Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.351-357
    • /
    • 2009
  • This study was conducted to verify the simulation model through the drying test, and investigate effect of factors, such as temperature of drying air, airflow rate, and velocity of the airflow, on the drying. The low temperature drying simulation model was developed based on the circulation dry simulation model presented by Keum et al. (1987), and by modifying low temperature thin layer drying model, equilibrium moisture content model, latent heat of vaporization model, and crack ratio prediction model. The heat pump and experimental dryer with a capacity of 150kg were used for the test. The RMSE between the predicted and measured value was 0.27% (drying temperature), 0.15% (crack ratio), and 2.08% (relative humidity), so the relevance of the model was verified. In addition, the effect of drying temperature, airflow rate, and velocity of the airflow on the drying was examined. The experimental results showed that the crack ratio at drying temperature of $25{\sim}40^{\circ}C$ was allowable. Moreover, at below $30^{\circ}C$, variation of the crack ratio was slight, but drying time was delayed. Given these results, the drying temperature of over $30^{\circ}C$ was effective. As the airflow rate increased, required energy dramatically increased. Whereas drying rate slowly increased, so loss of drying efficiency was caused. Considering these results, the dryer needed to be designed and adjusted to lower than $30\;m^3/min{\cdot}ton$. As velocity of the airflow increased, required drying energy increased when the velocity of the airflow was over $5\;m^3$/hr, while crack ratio and drying rate showed little variation.

Comparative Study on the Properties Estimation of the Constituents of the Natural Gas and Refrigerant Mixtures Between GERG-2004 Model and Peng-Robinson Equation of State (GERG-2004 모델식과 Peng-Robinson 상태방정식을 이용한 천연가스 및 냉매 구성성분들의 물성 비교연구)

  • Kim, Mi-Jin;Rho, Jae-Hyun;Kim, Dong-Sun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.906-918
    • /
    • 2012
  • In this study, we compared with results simulated by EOS(Equation of State) using Peng-Robinson model and GERG-2004 model for estimating vapor pressure, latent heat of vaporation, liquid density, and binary isotherm vapor-liquid equilibrium on pure components composing natural gases. We obtained the simulated results that while EOS using GERG-2004 model is more accurate than EOS using Peng-Robinson model for estimating liquid density, but rather it is less accurate for estimating binary isotherm vapor-liquid equilibrium. On the other hand, the use of Costald model in EOS using Peng-Robinson model for increasing more accuracy to calculate liquid density is almost same as EOS using GERG-2004 model within the error of 1 % compared with experimental data. Also, we confirmed that on the estimation of binary isotherm vapor-liquid equilibrium, EOS using GERG-2004 model is more accurate than EOS using Peng-Robinson model, but they are almost same.

Influence of fuel injection pattern on combustion and emissions characteristics of diesel engine by using emulsified fuel applied with EGR system (에멀젼연료와 EGR의 동시적용 디젤엔진에 있어서 연료 분사 패턴이 연소와 배기가스에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1064-1069
    • /
    • 2014
  • The use of emulsified fuel and EGR (Exhaust gas recirculation) system are effective methods to reduce NOx emission from diesel engines. In general, it is considered that EGR method influences diesel engine combustion in three different ways: thermal, chemical and dilution effect. Among others, the thermal effect is related to the increase of specific heat capacity due to the presence of $CO_2$ and $H_2O$ in inlet air. Meanwhile, emulsified fuel method of utilizing latent heat of vaporization and miro-explosion has been recognized as an effective technique for reducing diesel engine emissions. In this paper, an author studied on combustion and emission characteristics by using emulsified fuel (EF, Light oil : 80% + Water : 20%) and EGR (30% EGR ratio) system. And the effect of fuel injection pattern control was investigated.

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.